/- Copyright (c) 2015 Joe Hendrix. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Joe Hendrix Basic operations on bitvectors. This is a work-in-progress, and contains additions to other theories. -/ import data.list import data.tuple namespace bv open bool open eq.ops open list open nat open prod open subtype open tuple definition bv [reducible] (n : ℕ) := tuple bool n -- Create a zero bitvector definition bv_zero (n : ℕ) : bv n := replicate n ff -- Create a bitvector with the constant one. definition bv_one : Π (n : ℕ), bv n | 0 := nil | (succ n) := (replicate n ff : bv n) ++ (tt :: nil) definition bv_cong {a b : ℕ} : (a = b) → bv a → bv b | c (tag x p) := tag x (c ▸ p) section shift -- shift left definition bv_shl {n:ℕ} : bv n → ℕ → bv n | x i := if le : i ≤ n then let r := dropn i x ++ replicate i ff in let eq := calc (n-i) + i = n : nat.sub_add_cancel le in bv_cong eq r else bv_zero n definition fill_shr {n:ℕ} (x : bv n) (i : ℕ) (fill : bool) : bv n := let y := replicate (min n i) fill ++ firstn (n-i) x in have min n i + min (n-i) n = n, from if h : i ≤ n then by rewrite [min_eq_right h, min_eq_left !sub_le, -nat.add_sub_assoc h, nat.add_sub_cancel_left] else have h : i ≥ n, from le_of_not_ge h, by rewrite [min_eq_left h, sub_eq_zero_of_le h, min_eq_left !zero_le], bv_cong this y -- unsigned shift right definition bv_ushr {n:ℕ} : bv n → ℕ → bv n | x i := fill_shr x i ff -- signed shift right definition bv_sshr {m:ℕ} : bv (succ m) → ℕ → bv (succ m) | x i := head x :: fill_shr (tail x) i (head x) end shift section bitwise variable { n : ℕ } definition bv_not : bv n → bv n := map bnot definition bv_and : bv n → bv n → bv n := map₂ band definition bv_or : bv n → bv n → bv n := map₂ bor definition bv_xor : bv n → bv n → bv n := map₂ bxor end bitwise section arith variable { n : ℕ } protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c protected definition carry (x:bool) (y:bool) (c:bool) := x && y || x && c || y && c definition bv_neg : bv n → bv n | x := let f := λy c, (y || c, bxor y c) in pr₂ (mapAccumR f x ff) -- Add with carry (no overflow) definition bv_adc : bv n → bv n → bool → bv (n+1) | x y c := let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in let z := tuple.mapAccumR₂ f x y c in (pr₁ z) :: (pr₂ z) definition bv_add : bv n → bv n → bv n | x y := tail (bv_adc x y ff) protected definition borrow (x:bool) (y:bool) (b:bool) := bnot x && y || bnot x && b || y && b -- Subtract with borrow definition bv_sbb : bv n → bv n → bool → bool × bv n | x y b := let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in tuple.mapAccumR₂ f x y b definition bv_sub : bv n → bv n → bv n | x y := pr₂ (bv_sbb x y ff) definition bv_has_zero [instance] : has_zero (bv n) := has_zero.mk (bv_zero n) definition bv_has_one [instance] : has_one (bv n) := has_one.mk (bv_one n) definition bv_has_add [instance] : has_add (bv n) := has_add.mk bv_add definition bv_has_sub [instance] : has_sub (bv n) := has_sub.mk bv_sub definition bv_has_neg [instance] : has_neg (bv n) := has_neg.mk bv_neg definition bv_mul : bv n → bv n → bv n | x y := let f := λr b, cond b (r + r + y) (r + r) in foldl f 0 (to_list x) definition bv_has_mul [instance] : has_mul (bv n) := has_mul.mk bv_mul definition bv_ult : bv n → bv n → bool := λx y, pr₁ (bv_sbb x y ff) definition bv_ugt : bv n → bv n → bool := λx y, bv_ult y x definition bv_ule : bv n → bv n → bool := λx y, bnot (bv_ult y x) definition bv_uge : bv n → bv n → bool := λx y, bv_ule y x definition bv_slt : bv (succ n) → bv (succ n) → bool := λx y, cond (head x) (cond (head y) (bv_ult (tail x) (tail y)) -- both negative tt) -- x is negative and y is not (cond (head y) ff -- y is negative and x is not (bv_ult (tail x) (tail y))) -- both positive definition bv_sgt : bv (succ n) → bv (succ n) → bool := λx y, bv_slt y x definition bv_sle : bv (succ n) → bv (succ n) → bool := λx y, bnot (bv_slt y x) definition bv_sge : bv (succ n) → bv (succ n) → bool := λx y, bv_sle y x end arith section from_bv variable {A : Type} -- Convert a bitvector to another number. definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {n:nat} (v:bv n) : A := let f := λr b, cond b (r + r + 1) (r + r) in foldl f 0 (to_list v) end from_bv end bv