import logic data.nat.basic data.prod data.unit open nat prod inductive vector (A : Type) : nat → Type := vnil : vector A zero, vcons : Π {n : nat}, A → vector A n → vector A (succ n) namespace vector print definition no_confusion theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := begin intro h, apply (no_confusion h), intros, assumption end theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ := begin intro h, apply heq.to_eq, apply (no_confusion h), intros, eassumption, end section universe variables l₁ l₂ variable {A : Type.{l₁}} variable C : Π (n : nat), vector A n → Type.{l₂} definition below {n : nat} (v : vector A n) := rec_on v unit.{max 1 l₂} (λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (r₁ : Type.{max 1 l₂}), C n₁ v₁ × r₁) end section universe variables l₁ l₂ variable {A : Type.{l₁}} variable {C : Π (n : nat), vector A n → Type.{l₂}} definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), below C v → C n v) : C n v := have general : C n v × below C v, from rec_on v (pair (H zero (vnil A) unit.star) unit.star) (λ (n₁ : nat) (a₁ : A) (v₁ : vector A n₁) (r₁ : C n₁ v₁ × below C v₁), have b : below C (vcons a₁ v₁), from r₁, have c : C (succ n₁) (vcons a₁ v₁), from H (succ n₁) (vcons a₁ v₁) b, pair c b), pr₁ general end check brec_on end vector