/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Prime numbers -/ import data.nat.fact data.nat.bquant data.nat.power logic.identities open bool namespace nat open decidable definition prime [reducible] (p : nat) := p ≥ 2 ∧ ∀ m, m ∣ p → m = 1 ∨ m = p definition prime_ext (p : nat) := p ≥ 2 ∧ ∀ m, m ≤ p → m ∣ p → m = 1 ∨ m = p local attribute prime_ext [reducible] lemma prime_ext_iff_prime (p : nat) : prime_ext p ↔ prime p := iff.intro begin intro h, cases h with h₁ h₂, constructor, assumption, intro m d, exact h₂ m (le_of_dvd (lt_of_succ_le (le_of_succ_le h₁)) d) d end begin intro h, cases h with h₁ h₂, constructor, assumption, intro m l d, exact h₂ m d end definition decidable_prime [instance] (p : nat) : decidable (prime p) := decidable_of_decidable_of_iff _ (prime_ext_iff_prime p) lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 := assume h, obtain h₁ h₂, from h, h₁ lemma pred_prime_pos {p : nat} : prime p → pred p > 0 := assume h, have h₁ : p ≥ 2, from ge_two_of_prime h, lt_of_succ_le (pred_le_pred h₁) lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p := assume h, succ_pred_of_pos (lt_of_succ_le (le_of_succ_le (ge_two_of_prime h))) lemma divisor_of_prime {p m : nat} : prime p → m ∣ p → m = 1 ∨ m = p := assume h d, obtain h₁ h₂, from h, h₂ m d lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i := assume ipp pos h, have h₁ : p ∣ i, from dvd_of_mod_eq_zero h, have h₂ : p ≥ 2, from ge_two_of_prime ipp, have h₃ : p ≤ i, from le_of_dvd pos h₁, lt_of_succ_le (le.trans h₂ h₃) end nat