-- Copyright (c) 2015 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jakob von Raumer -- Truncation properties of truncatedness import types.pi open truncation sigma sigma.ops pi function eq equiv namespace truncation definition is_contr.sigma_char (A : Type) : (Σ (center : A), Π (a : A), center = a) ≃ (is_contr A) := begin fapply equiv.mk, intro S, apply is_contr.mk, exact S.2, fapply is_equiv.adjointify, intro H, apply sigma.mk, exact (@contr A H), intro H, apply (is_trunc.rec_on H), intro Hint, apply (contr_internal.rec_on Hint), intros (H1, H2), apply idp, intro S, apply (sigma.rec_on S), intros (H1, H2), apply idp, end set_option pp.implicit true definition is_trunc.pi_char (n : trunc_index) (A : Type) : (Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) := begin fapply equiv.mk, intro H, apply is_trunc_succ, fapply is_equiv.adjointify, intros (H, x, y), apply succ_is_trunc, intro H, apply (is_trunc.rec_on H), intro Hint, apply idp, intro P, exact sorry, end definition is_trunc_is_hprop {n : trunc_index} : Π (A : Type), is_hprop (is_trunc n A) := begin apply (trunc_index.rec_on n), intro A, apply trunc_equiv, apply equiv.to_is_equiv, apply is_contr.sigma_char, apply (@is_hprop.mk), intros, fapply sigma.path, apply x.2, apply (@is_hprop.elim), apply trunc_pi, intro a, apply is_hprop.mk, intros (w, z), assert (H : is_hset A), apply trunc_succ, apply trunc_succ, apply is_contr.mk, exact y.2, fapply (@is_hset.elim A _ _ _ w z), intros (n', IH, A), apply trunc_equiv, apply equiv.to_is_equiv, apply is_trunc.pi_char, end end truncation