/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Definitions and properties of div and mod. Much of the development follows Isabelle's library. -/ import data.nat.sub tools.fake_simplifier open eq.ops well_founded decidable fake_simplifier prod namespace nat /- div -/ -- auxiliary lemma used to justify div private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero definition divide (x y : nat) := fix div.F x y notation a div b := divide a b theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 := congr_fun (fix_eq div.F x) y theorem div_zero (a : ℕ) : a div 0 = 0 := divide_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a div b = 0 := divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h)) theorem zero_div (b : ℕ) : 0 div b = 0 := divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) := divide_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_div_self (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) := calc (x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def ... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x)) ... = succ (x div z) : {!add_sub_cancel} theorem add_div_self_left {x : ℕ} (z : ℕ) (H : x > 0) : (x + z) div x = succ (z div x) := !add.comm ▸ !add_div_self H theorem add_mul_div_self {x y z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y := nat.induction_on y (calc (x + zero * z) div z = (x + zero) div z : zero_mul ... = x div z : add_zero ... = x div z + zero : add_zero) (take y, assume IH : (x + y * z) div z = x div z + y, calc (x + succ y * z) div z = (x + y * z + z) div z : by simp ... = succ ((x + y * z) div z) : !add_div_self H ... = x div z + succ y : by simp) theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z := !mul.comm ▸ add_mul_div_self H theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : n > 0) : m * n div n = m := calc m * n div n = (0 + m * n) div n : zero_add ... = 0 div n + m : add_mul_div_self H ... = 0 + m : zero_div ... = m : zero_add theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n div m = n := !mul.comm ▸ !mul_div_cancel H /- mod -/ private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x definition modulo (x y : nat) := fix mod.F x y notation a mod b := modulo a b notation a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c theorem modulo_def (x y : nat) : modulo x y = if 0 < y ∧ y ≤ x then modulo (x - y) y else x := congr_fun (fix_eq mod.F x) y theorem mod_zero (a : ℕ) : a mod 0 = a := modulo_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0)) theorem mod_eq_of_lt {a b : ℕ} (h : a < b) : a mod b = a := modulo_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h)) theorem zero_mod (b : ℕ) : 0 mod b = 0 := modulo_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) theorem mod_eq_sub_mod {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a mod b = (a - b) mod b := modulo_def a b ⬝ if_pos (and.intro h₁ h₂) theorem add_mod_self (x z : ℕ) : (x + z) mod z = x mod z := by_cases_zero_pos z (by rewrite add_zero) (take z, assume H : z > 0, calc (x + z) mod z = if 0 < z ∧ z ≤ x + z then (x + z - z) mod z else _ : modulo_def ... = (x + z - z) mod z : if_pos (and.intro H (le_add_left z x)) ... = x mod z : add_sub_cancel) theorem add_mod_self_left (x z : ℕ) : (x + z) mod x = z mod x := !add.comm ▸ !add_mod_self theorem add_mul_mod_self (x y z : ℕ) : (x + y * z) mod z = x mod z := nat.induction_on y (calc (x + zero * z) mod z = (x + zero) mod z : zero_mul ... = x mod z : add_zero) (take y, assume IH : (x + y * z) mod z = x mod z, calc (x + succ y * z) mod z = (x + (y * z + z)) mod z : succ_mul ... = (x + y * z + z) mod z : add.assoc ... = (x + y * z) mod z : !add_mod_self ... = x mod z : IH) theorem add_mul_mod_self_left (x y z : ℕ) : (x + y * z) mod y = x mod y := !mul.comm ▸ !add_mul_mod_self theorem mul_mod_left (m n : ℕ) : (m * n) mod n = 0 := by rewrite [-zero_add (m * n), add_mul_mod_self, zero_mod] theorem mul_mod_right (m n : ℕ) : (m * n) mod m = 0 := !mul.comm ▸ !mul_mod_left theorem mod_lt (x : ℕ) {y : ℕ} (H : y > 0) : x mod y < y := nat.case_strong_induction_on x (show 0 mod y < y, from !zero_mod⁻¹ ▸ H) (take x, assume IH : ∀x', x' ≤ x → x' mod y < y, show succ x mod y < y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x mod y = succ x, from mod_eq_of_lt H1, show succ x mod y < y, from H2⁻¹ ▸ H1) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_gt H1, have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have H4 : succ x - y < succ x, from sub_lt !succ_pos H, have H5 : succ x - y ≤ x, from le_of_lt_succ H4, show succ x mod y < y, from H3⁻¹ ▸ IH _ H5)) theorem mod_one (n : ℕ) : n mod 1 = 0 := have H1 : n mod 1 < 1, from !mod_lt !succ_pos, eq_zero_of_le_zero (le_of_lt_succ H1) /- properties of div and mod -/ -- the quotient / remainder theorem theorem eq_div_mul_add_mod (x y : ℕ) : x = x div y * y + x mod y := by_cases_zero_pos y (show x = x div 0 * 0 + x mod 0, from (calc x div 0 * 0 + x mod 0 = 0 + x mod 0 : mul_zero ... = x mod 0 : zero_add ... = x : mod_zero)⁻¹) (take y, assume H : y > 0, show x = x div y * y + x mod y, from nat.case_strong_induction_on x (show 0 = (0 div y) * y + 0 mod y, by simp) (take x, assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y, show succ x = succ x div y * y + succ x mod y, from by_cases -- (succ x < y) (assume H1 : succ x < y, have H2 : succ x div y = 0, from div_eq_zero_of_lt H1, have H3 : succ x mod y = succ x, from mod_eq_of_lt H1, by simp) (assume H1 : ¬ succ x < y, have H2 : y ≤ succ x, from le_of_not_gt H1, have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2, have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have H5 : succ x - y < succ x, from sub_lt !succ_pos H, have H6 : succ x - y ≤ x, from le_of_lt_succ H5, (calc succ x div y * y + succ x mod y = succ ((succ x - y) div y) * y + succ x mod y : H3 ... = ((succ x - y) div y) * y + y + succ x mod y : succ_mul ... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4 ... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm ... = succ x - y + y : {!(IH _ H6)⁻¹} ... = succ x : sub_add_cancel H2)⁻¹))) theorem mod_le {x y : ℕ} : x mod y ≤ x := !eq_div_mul_add_mod⁻¹ ▸ !le_add_left theorem eq_remainder {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 := calc r1 = r1 mod y : mod_eq_of_lt H1 ... = (r1 + q1 * y) mod y : !add_mul_mod_self⁻¹ ... = (q1 * y + r1) mod y : add.comm ... = (r2 + q2 * y) mod y : by rewrite [H3, add.comm] ... = r2 mod y : !add_mul_mod_self ... = r2 : mod_eq_of_lt H2 theorem eq_quotient {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y) (H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 := have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H1 H2 H3) ▸ H3, have H5 : q1 * y = q2 * y, from add.cancel_right H4, have H6 : y > 0, from lt_of_le_of_lt !zero_le H1, show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y := by_cases -- (y = 0) (assume H : y = 0, by simp) (assume H : y ≠ 0, have ypos : y > 0, from pos_of_ne_zero H, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, eq_quotient H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod ... = z * (x div y * y + x mod y) : eq_div_mul_add_mod ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)) theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) div (y * z) = x div y := !mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos theorem mul_mod_mul_left (z x y : ℕ) : (z * x) mod (z * y) = z * (x mod y) := or.elim (eq_zero_or_pos z) (assume H : z = 0, calc (z * x) mod (z * y) = (0 * x) mod (z * y) : by subst z ... = 0 mod (z * y) : zero_mul ... = 0 : zero_mod ... = 0 * (x mod y) : zero_mul ... = z * (x mod y) : by subst z) (assume zpos : z > 0, or.elim (eq_zero_or_pos y) (assume H : y = 0, by rewrite [H, mul_zero, *mod_zero]) (assume ypos : y > 0, have zypos : z * y > 0, from mul_pos zpos ypos, have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, eq_remainder H1 H2 (calc ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod ... = z * (x div y * y + x mod y) : eq_div_mul_add_mod ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm))) theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z := mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left theorem mod_self (n : ℕ) : n mod n = 0 := nat.cases_on n (by simp) (take n, have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1), from !mul_mod_mul_left, (by simp) ▸ H) theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k := calc (m * n) mod k = (((m div k) * k + m mod k) * n) mod k : eq_div_mul_add_mod ... = ((m mod k) * n) mod k : by rewrite [mul.right_distrib, mul.right_comm, add.comm, add_mul_mod_self] theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) mod k = (m * (n mod k)) mod k := !mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod theorem div_one (n : ℕ) : n div 1 = n := have H : n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹, (by simp) ▸ H theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 := have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H, (by simp) ▸ H1 theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m := by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero] theorem mul_div_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : n * (m div n) = m := !mul.comm ▸ div_mul_cancel_of_mod_eq_zero H /- dvd -/ theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n mod m = 0) : m ∣ n := dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H) theorem mod_eq_zero_of_dvd {m n : ℕ} (H : m ∣ n) : n mod m = 0 := dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right) theorem dvd_iff_mod_eq_zero (m n : ℕ) : m ∣ n ↔ n mod m = 0 := iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero definition dvd.decidable_rel [instance] : decidable_rel dvd := take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero) theorem div_mul_cancel {m n : ℕ} (H : n ∣ m) : m div n * n = m := div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H) theorem mul_div_cancel' {m n : ℕ} (H : n ∣ m) : n * (m div n) = m := !mul.comm ▸ div_mul_cancel H theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : m ∣ n₁ + n₂) (H₂ : m ∣ n₁) : m ∣ n₂ := obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁, obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂, have aux : m * (c₁ - c₂) = n₂, from calc m * (c₁ - c₂) = m * c₁ - m * c₂ : mul_sub_left_distrib ... = n₁ + n₂ - m * c₂ : Hc₁ ... = n₁ + n₂ - n₁ : Hc₂ ... = n₂ : add_sub_cancel_left, dvd.intro aux theorem dvd_of_dvd_add_right {m n₁ n₂ : ℕ} (H : m ∣ n₁ + n₂) : m ∣ n₂ → m ∣ n₁ := dvd_of_dvd_add_left (!add.comm ▸ H) theorem dvd_sub {m n₁ n₂ : ℕ} (H1 : m ∣ n₁) (H2 : m ∣ n₂) : m ∣ n₁ - n₂ := by_cases (assume H3 : n₁ ≥ n₂, have H4 : n₁ = n₁ - n₂ + n₂, from (sub_add_cancel H3)⁻¹, show m ∣ n₁ - n₂, from dvd_of_dvd_add_right (H4 ▸ H1) H2) (assume H3 : ¬ (n₁ ≥ n₂), have H4 : n₁ - n₂ = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_ge H3)), show m ∣ n₁ - n₂, from H4⁻¹ ▸ dvd_zero _) theorem dvd.antisymm {m n : ℕ} : m ∣ n → n ∣ m → m = n := by_cases_zero_pos n (assume H1, assume H2 : 0 ∣ m, eq_zero_of_zero_dvd H2) (take n, assume Hpos : n > 0, assume H1 : m ∣ n, assume H2 : n ∣ m, obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1, obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2, have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹, have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3, have H5 : k = 1, from eq_one_of_mul_eq_one_left H4, show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹)) theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n div k = m * (n div k) := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m * n div k = m * n div 0 : H1 ... = 0 : div_zero ... = m * 0 : mul_zero m ... = m * (n div 0) : div_zero ... = m * (n div k) : H1) (assume H1 : k > 0, have H2 : n = n div k * k, from (div_mul_cancel H)⁻¹, calc m * n div k = m * (n div k * k) div k : H2 ... = m * (n div k) * k div k : mul.assoc ... = m * (n div k) : mul_div_cancel _ H1) theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : k > 0) (H : k * m ∣ k * n) : m ∣ n := dvd.elim H (take l, assume H1 : k * n = k * m * l, have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc), dvd.intro H2⁻¹) theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : m * k ∣ n * k) : m ∣ n := dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H) theorem div_dvd_div {k m n : ℕ} (H1 : k ∣ m) (H2 : m ∣ n) : m div k ∣ n div k := have H3 : m = m div k * k, from (div_mul_cancel H1)⁻¹, have H4 : n = n div k * k, from (div_mul_cancel (dvd.trans H1 H2))⁻¹, or.elim (eq_zero_or_pos k) (assume H5 : k = 0, have H6: n div k = 0, from (congr_arg _ H5 ⬝ !div_zero), H6⁻¹ ▸ !dvd_zero) (assume H5 : k > 0, dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2)) theorem div_eq_iff_eq_mul_right {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m div n = k ↔ m = n * k := iff.intro (assume H1, by rewrite [-H1, mul_div_cancel' H']) (assume H1, by rewrite [H1, !mul_div_cancel_left H]) theorem div_eq_iff_eq_mul_left {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m div n = k ↔ m = k * n := !mul.comm ▸ !div_eq_iff_eq_mul_right H H' theorem eq_mul_of_div_eq_right {m n k : ℕ} (H1 : n ∣ m) (H2 : m div n = k) : m = n * k := calc m = n * (m div n) : mul_div_cancel' H1 ... = n * k : H2 theorem div_eq_of_eq_mul_right {m n k : ℕ} (H1 : n > 0) (H2 : m = n * k) : m div n = k := calc m div n = n * k div n : H2 ... = k : !mul_div_cancel_left H1 theorem eq_mul_of_div_eq_left {m n k : ℕ} (H1 : n ∣ m) (H2 : m div n = k) : m = k * n := !mul.comm ▸ !eq_mul_of_div_eq_right H1 H2 theorem div_eq_of_eq_mul_left {m n k : ℕ} (H1 : n > 0) (H2 : m = k * n) : m div n = k := !div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2) /- div and ordering -/ theorem div_mul_le (m n : ℕ) : m div n * n ≤ m := calc m = m div n * n + m mod n : eq_div_mul_add_mod ... ≥ m div n * n : le_add_right theorem div_le_of_le_mul {m n k : ℕ} (H : m ≤ n * k) : m div k ≤ n := or.elim (eq_zero_or_pos k) (assume H1 : k = 0, calc m div k = m div 0 : H1 ... = 0 : div_zero ... ≤ n : zero_le) (assume H1 : k > 0, le_of_mul_le_mul_right (calc m div k * k ≤ m div k * k + m mod k : le_add_right ... = m : eq_div_mul_add_mod ... ≤ n * k : H) H1) theorem div_le_self (m n : ℕ) : m div n ≤ m := nat.cases_on n (!div_zero⁻¹ ▸ !zero_le) take n, have H : m ≤ m * succ n, from calc m = m * 1 : mul_one ... ≤ m * succ n : !mul_le_mul_left (succ_le_succ !zero_le), div_le_of_le_mul H theorem mul_le_of_le_div {m n k : ℕ} (H : m ≤ n div k) : m * k ≤ n := calc m * k ≤ n div k * k : !mul_le_mul_right H ... ≤ n : div_mul_le theorem le_div_of_mul_le {m n k : ℕ} (H1 : k > 0) (H2 : m * k ≤ n) : m ≤ n div k := have H3 : m * k < (succ (n div k)) * k, from calc m * k ≤ n : H2 ... = n div k * k + n mod k : eq_div_mul_add_mod ... < n div k * k + k : add_lt_add_left (!mod_lt H1) ... = (succ (n div k)) * k : succ_mul, lt_of_mul_lt_mul_right H3 theorem le_div_iff_mul_le {m n k : ℕ} (H : k > 0) : m ≤ n div k ↔ m * k ≤ n := iff.intro !mul_le_of_le_div (!le_div_of_mul_le H) theorem div_le_div {m n : ℕ} (k : ℕ) (H : m ≤ n) : m div k ≤ n div k := by_cases_zero_pos k (by rewrite [*div_zero]) (take k, assume H1 : k > 0, le_div_of_mul_le H1 (le.trans !div_mul_le H)) theorem div_lt_of_lt_mul {m n k : ℕ} (H : m < n * k) : m div k < n := lt_of_mul_lt_mul_right (calc m div k * k ≤ m div k * k + m mod k : le_add_right ... = m : eq_div_mul_add_mod ... < n * k : H) theorem lt_mul_of_div_lt {m n k : ℕ} (H1 : k > 0) (H2 : m div k < n) : m < n * k := assert H3 : succ (m div k) * k ≤ n * k, from !mul_le_mul_right (succ_le_of_lt H2), have H4 : m div k * k + k ≤ n * k, by rewrite [succ_mul at H3]; apply H3, calc m = m div k * k + m mod k : eq_div_mul_add_mod ... < m div k * k + k : add_lt_add_left (!mod_lt H1) ... ≤ n * k : H4 theorem div_lt_iff_lt_mul {m n k : ℕ} (H : k > 0) : m div k < n ↔ m < n * k := iff.intro (!lt_mul_of_div_lt H) !div_lt_of_lt_mul theorem div_le_iff_le_mul_of_div {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) : m div n ≤ k ↔ m ≤ k * n := by rewrite [propext (!le_iff_mul_le_mul_right H), !div_mul_cancel H'] theorem le_mul_of_div_le_of_div {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m div n ≤ k) : m ≤ k * n := iff.mp (!div_le_iff_le_mul_of_div H1 H2) H3 -- needed for integer division theorem mul_sub_div_of_lt {m n k : ℕ} (H : k < m * n) : (m * n - (k + 1)) div m = n - k div m - 1 := have H1 : k div m < n, from div_lt_of_lt_mul (!mul.comm ▸ H), have H2 : n - k div m ≥ 1, from le_sub_of_add_le (calc 1 + k div m = succ (k div m) : add.comm ... ≤ n : succ_le_of_lt H1), assert H3 : n - k div m = n - k div m - 1 + 1, from (sub_add_cancel H2)⁻¹, assert H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero _ (!zero_mul ▸ H' ▸ H)), have H5 : k mod m + 1 ≤ m, from succ_le_of_lt (!mod_lt H4), assert H6 : m - (k mod m + 1) < m, from sub_lt_self H4 !succ_pos, calc (m * n - (k + 1)) div m = (m * n - (k div m * m + k mod m + 1)) div m : eq_div_mul_add_mod ... = (m * n - k div m * m - (k mod m + 1)) div m : by rewrite [*sub_sub] ... = ((n - k div m) * m - (k mod m + 1)) div m : by rewrite [mul.comm m, mul_sub_right_distrib] ... = ((n - k div m - 1) * m + m - (k mod m + 1)) div m : by rewrite [H3 at {1}, mul.right_distrib, nat.one_mul] ... = ((n - k div m - 1) * m + (m - (k mod m + 1))) div m : {add_sub_assoc H5 _} ... = (m - (k mod m + 1)) div m + (n - k div m - 1) : by rewrite [add.comm, (add_mul_div_self H4)] ... = n - k div m - 1 : by rewrite [div_eq_zero_of_lt H6, zero_add] end nat