/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Functor precategory and category -/ import ..nat_trans ..category open eq functor is_trunc nat_trans iso is_equiv namespace category definition precategory_functor [instance] [reducible] [constructor] (D C : Precategory) : precategory (functor C D) := precategory.mk (λa b, nat_trans a b) (λ a b c g f, nat_trans.compose g f) (λ a, nat_trans.id) (λ a b c d h g f, !nat_trans.assoc) (λ a b f, !nat_trans.id_left) (λ a b f, !nat_trans.id_right) definition Precategory_functor [reducible] [constructor] (D C : Precategory) : Precategory := precategory.Mk (precategory_functor D C) infixr ` ^c `:35 := Precategory_functor section /- we prove that if a natural transformation is pointwise an iso, then it is an iso -/ variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)] include iso definition nat_trans_inverse [constructor] : G ⟹ F := nat_trans.mk (λc, (η c)⁻¹) (λc d f, abstract begin apply comp_inverse_eq_of_eq_comp, transitivity (natural_map η d)⁻¹ ∘ to_fun_hom G f ∘ natural_map η c, {apply eq_inverse_comp_of_comp_eq, symmetry, apply naturality}, {apply assoc} end end) definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = 1 := begin fapply (apd011 nat_trans.mk), apply eq_of_homotopy, intro c, apply left_inverse, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply is_hset.elim end definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = 1 := begin fapply (apd011 nat_trans.mk), apply eq_of_homotopy, intro c, apply right_inverse, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply is_hset.elim end definition is_iso_nat_trans [constructor] [instance] : is_iso η := is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η) variable (iso) definition functor_iso [constructor] : F ≅ G := @(iso.mk η) !is_iso_nat_trans end section /- and conversely, if a natural transformation is an iso, it is componentwise an iso -/ variables {A B C D : Precategory} {F G : C ⇒ D} (η : hom F G) [isoη : is_iso η] (c : C) include isoη definition componentwise_is_iso [instance] [constructor] : is_iso (η c) := @is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c) (ap010 natural_map (right_inverse η) c) local attribute componentwise_is_iso [instance] variable {isoη} definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp variable [isoη] definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ := calc G f = (G f ∘ η c) ∘ (η c)⁻¹ : by rewrite comp_inverse_cancel_right ... = (η c' ∘ F f) ∘ (η c)⁻¹ : by rewrite naturality ... = η c' ∘ F f ∘ (η c)⁻¹ : by rewrite assoc definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f := calc (η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : by rewrite naturality ... = F f : by rewrite inverse_comp_cancel_left omit isoη definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c := @iso.mk _ _ _ _ (natural_map (to_hom η) c) (@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c) definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) := iso_eq (idpath (ID (F c))) definition componentwise_iso_iso_of_eq (p : F = G) (c : C) : componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) := eq.rec_on p !componentwise_iso_id definition natural_map_hom_of_eq (p : F = G) (c : C) : natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) := eq.rec_on p idp definition natural_map_inv_of_eq (p : F = G) (c : C) : natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ := eq.rec_on p idp definition hom_of_eq_compose_right {H : B ⇒ C} (p : F = G) : hom_of_eq (ap (λx, x ∘f H) p) = hom_of_eq p ∘nf H := eq.rec_on p idp definition inv_of_eq_compose_right {H : B ⇒ C} (p : F = G) : inv_of_eq (ap (λx, x ∘f H) p) = inv_of_eq p ∘nf H := eq.rec_on p idp definition hom_of_eq_compose_left {H : D ⇒ C} (p : F = G) : hom_of_eq (ap (λx, H ∘f x) p) = H ∘fn hom_of_eq p := by induction p; exact !fn_id⁻¹ definition inv_of_eq_compose_left {H : D ⇒ C} (p : F = G) : inv_of_eq (ap (λx, H ∘f x) p) = H ∘fn inv_of_eq p := by induction p; exact !fn_id⁻¹ definition assoc_natural [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) ⟹ (H ∘f G) ∘f F := change_natural_map (hom_of_eq !functor.assoc) (λa, id) (λa, !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_assoc) definition assoc_natural_rev [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (H ∘f G) ∘f F ⟹ H ∘f (G ∘f F) := change_natural_map (inv_of_eq !functor.assoc) (λa, id) (λa, !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_assoc) definition id_left_natural [constructor] (F : C ⇒ D) : functor.id ∘f F ⟹ F := change_natural_map (hom_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_left_natural_rev [constructor] (F : C ⇒ D) : F ⟹ functor.id ∘f F := change_natural_map (inv_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) definition id_right_natural [constructor] (F : C ⇒ D) : F ∘f functor.id ⟹ F := change_natural_map (hom_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_right_natural_rev [constructor] (F : C ⇒ D) : F ⟹ F ∘f functor.id := change_natural_map (inv_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) end namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_iso_ob (η : F ≅ G) (c : C) : F c = G c := by apply eq_of_iso; apply componentwise_iso; exact η local attribute functor.to_fun_hom [quasireducible] definition eq_of_iso (η : F ≅ G) : F = G := begin fapply functor_eq, {exact (eq_of_iso_ob η)}, {intro c c' f, esimp [eq_of_iso_ob, inv_of_eq, hom_of_eq, eq_of_iso], rewrite [*right_inv iso_of_eq], symmetry, apply @naturality_iso _ _ _ _ _ (iso.struct _) } end definition iso_of_eq_eq_of_iso (η : F ≅ G) : iso_of_eq (eq_of_iso η) = η := begin apply iso_eq, apply nat_trans_eq, intro c, rewrite natural_map_hom_of_eq, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [hom_of_eq,eq_of_iso_ob], rewrite (right_inv iso_of_eq), end definition eq_of_iso_iso_of_eq (p : F = G) : eq_of_iso (iso_of_eq p) = p := begin apply functor_eq2, intro c, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [eq_of_iso_ob], rewrite componentwise_iso_iso_of_eq, rewrite (left_inv iso_of_eq) end definition is_univalent (D : Category) (C : Precategory) : is_univalent (D ^c C) := λF G, adjointify _ eq_of_iso iso_of_eq_eq_of_iso eq_of_iso_iso_of_eq end functor definition category_functor [instance] [constructor] (D : Category) (C : Precategory) : category (D ^c C) := category.mk (D ^c C) (functor.is_univalent D C) definition Category_functor [constructor] (D : Category) (C : Precategory) : Category := category.Mk (D ^c C) !category_functor --this definition is only useful if the exponent is a category, -- and the elaborator has trouble with inserting the coercion definition Category_functor' [constructor] (D C : Category) : Category := Category_functor D C namespace ops infixr ` ^c2 `:35 := Category_functor end ops namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(a : C), is_iso (η a)) : F = G := eq_of_iso (functor_iso η iso) definition iso_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : iso_of_eq (eq_of_pointwise_iso η iso) = functor_iso η iso := !iso_of_eq_eq_of_iso definition hom_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : hom_of_eq (eq_of_pointwise_iso η iso) = η := !hom_of_eq_eq_of_iso definition inv_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : inv_of_eq (eq_of_pointwise_iso η iso) = nat_trans_inverse η := !inv_of_eq_eq_of_iso end functor end category