/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer -/ import .iso types.pi open function category eq prod prod.ops equiv is_equiv sigma sigma.ops is_trunc funext iso open pi structure functor (C D : Precategory) : Type := (to_fun_ob : C → D) (to_fun_hom : Π {a b : C}, hom a b → hom (to_fun_ob a) (to_fun_ob b)) (respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) (respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f) namespace functor infixl ` ⇒ `:25 := functor variables {A B C D E : Precategory} attribute to_fun_ob [coercion] attribute to_fun_hom [coercion] -- The following lemmas will later be used to prove that the type of -- precategories forms a precategory itself protected definition compose [reducible] [constructor] (G : functor D E) (F : functor C D) : functor C E := functor.mk (λ x, G (F x)) (λ a b f, G (F f)) (λ a, abstract calc G (F (ID a)) = G (ID (F a)) : by rewrite respect_id ... = ID (G (F a)) : by rewrite respect_id end) (λ a b c g f, abstract calc G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp ... = G (F g) ∘ G (F f) : by rewrite respect_comp end) infixr ` ∘f `:60 := functor.compose protected definition id [reducible] [constructor] {C : Precategory} : functor C C := mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp) protected definition ID [reducible] [constructor] (C : Precategory) : functor C C := @functor.id C notation 1 := functor.id definition constant_functor [constructor] (C : Precategory) {D : Precategory} (d : D) : C ⇒ D := functor.mk (λc, d) (λc c' f, id) (λc, idp) (λa b c g f, !id_id⁻¹) definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := apd01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim definition functor_eq' {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ = to_fun_ob F₂), (transport (λx, Πa b f, hom (x a) (x b)) p @(to_fun_hom F₁) = @(to_fun_hom F₂)) → F₁ = F₂ := by induction F₁; induction F₂; apply functor_mk_eq' definition functor_mk_eq {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ ~ F₂) (pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := begin fapply functor_mk_eq', { exact eq_of_homotopy pF}, { refine eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, _))), intros, rewrite [+pi_transport_constant,-pH,-transport_hom]} end definition functor_eq {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ~ to_fun_ob F₂), (Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ := by induction F₁; induction F₂; apply functor_mk_eq definition functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂) (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) : functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ := functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH) definition preserve_is_iso [constructor] (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] : is_iso (F f) := begin fapply @is_iso.mk, apply (F (f⁻¹)), repeat (apply concat ; symmetry ; apply (respect_comp F) ; apply concat ; apply (ap (λ x, to_fun_hom F x)) ; (apply iso.left_inverse | apply iso.right_inverse); apply (respect_id F) ), end theorem respect_inv (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] [H' : is_iso (F f)] : F (f⁻¹) = (F f)⁻¹ := begin fapply @left_inverse_eq_right_inverse, apply (F f), transitivity to_fun_hom F (f⁻¹ ∘ f), {symmetry, apply (respect_comp F)}, {transitivity to_fun_hom F category.id, {congruence, apply iso.left_inverse}, {apply respect_id}}, apply iso.right_inverse end attribute preserve_is_iso [instance] [priority 100] definition to_fun_iso [constructor] (F : C ⇒ D) {a b : C} (f : a ≅ b) : F a ≅ F b := iso.mk (F f) theorem respect_inv' (F : C ⇒ D) {a b : C} (f : hom a b) {H : is_iso f} : F (f⁻¹) = (F f)⁻¹ := respect_inv F f theorem respect_refl (F : C ⇒ D) (a : C) : to_fun_iso F (iso.refl a) = iso.refl (F a) := iso_eq !respect_id theorem respect_symm (F : C ⇒ D) {a b : C} (f : a ≅ b) : to_fun_iso F f⁻¹ⁱ = (to_fun_iso F f)⁻¹ⁱ := iso_eq !respect_inv theorem respect_trans (F : C ⇒ D) {a b c : C} (f : a ≅ b) (g : b ≅ c) : to_fun_iso F (f ⬝i g) = to_fun_iso F f ⬝i to_fun_iso F g := iso_eq !respect_comp protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := !functor_mk_eq_constant (λa b f, idp) protected definition id_left (F : C ⇒ D) : 1 ∘f F = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition id_right (F : C ⇒ D) : F ∘f 1 = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition comp_id_eq_id_comp (F : C ⇒ D) : F ∘f 1 = 1 ∘f F := !functor.id_right ⬝ !functor.id_left⁻¹ -- "functor C D" is equivalent to a certain sigma type protected definition sigma_char : (Σ (to_fun_ob : C → D) (to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)), (Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) × (Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) := begin fapply equiv.MK, {intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1 with P11 P12, exact functor.mk d1 d2 P11 @P12}, {intro F, induction F with d1 d2 d3 d4, exact ⟨d1, @d2, (d3, @d4)⟩}, {intro F, induction F, reflexivity}, {intro S, induction S with d1 S2, induction S2 with d2 P1, induction P1, reflexivity}, end section local attribute precategory.is_hset_hom [priority 1001] protected theorem is_hset_functor [instance] [HD : is_hset D] : is_hset (functor C D) := by apply is_trunc_equiv_closed; apply functor.sigma_char end definition functor_mk_eq'_idp (F : C → D) (H : Π(a b : C), hom a b → hom (F a) (F b)) (id comp) : functor_mk_eq' id id comp comp (idpath F) (idpath H) = idp := begin fapply (apd011 (apd01111 functor.mk idp idp)), apply is_hset.elim, apply is_hset.elim end definition functor_eq'_idp (F : C ⇒ D) : functor_eq' idp idp = (idpath F) := by (cases F; apply functor_mk_eq'_idp) definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂) : functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apd to_fun_hom p) = p := begin cases p, cases F₁, apply concat, rotate_left 1, apply functor_eq'_idp, esimp end theorem functor_eq2' {F₁ F₂ : C ⇒ D} {p₁ p₂ : to_fun_ob F₁ = to_fun_ob F₂} (q₁ q₂) (r : p₁ = p₂) : functor_eq' p₁ q₁ = functor_eq' p₂ q₂ := by cases r; apply (ap (functor_eq' p₂)); apply is_hprop.elim theorem functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ~ ap010 to_fun_ob q) : p = q := begin cases F₁ with ob₁ hom₁ id₁ comp₁, cases F₂ with ob₂ hom₂ id₂ comp₂, rewrite [-functor_eq_eta' p, -functor_eq_eta' q], apply functor_eq2', apply ap_eq_ap_of_homotopy, exact r, end theorem ap010_apd01111_functor {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} {id₁ id₂ comp₁ comp₂} (pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) (pid : cast (apd011 _ pF pH) id₁ = id₂) (pcomp : cast (apd0111 _ pF pH pid) comp₁ = comp₂) (c : C) : ap010 to_fun_ob (apd01111 functor.mk pF pH pid pcomp) c = ap10 pF c := by induction pF; induction pH; induction pid; induction pcomp; reflexivity definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ~ to_fun_ob F₂) (q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ~3 @(to_fun_hom F₂)) (c : C) : ap010 to_fun_ob (functor_eq p q) c = p c := begin cases F₁ with F₁o F₁h F₁id F₁comp, cases F₂ with F₂o F₂h F₂id F₂comp, esimp [functor_eq,functor_mk_eq,functor_mk_eq'], rewrite [ap010_apd01111_functor,↑ap10,{apd10 (eq_of_homotopy p)}right_inv apd10] end definition ap010_functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} {id₁ id₂ comp₁ comp₂} (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) (c : C) : ap010 to_fun_ob (functor_mk_eq_constant id₁ id₂ comp₁ comp₂ pH) c = idp := !ap010_functor_eq definition ap010_assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) (a : A) : ap010 to_fun_ob (functor.assoc H G F) a = idp := by apply ap010_functor_mk_eq_constant definition compose_pentagon (K : D ⇒ E) (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (calc K ∘f H ∘f G ∘f F = (K ∘f H) ∘f G ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : functor.assoc) = (calc K ∘f H ∘f G ∘f F = K ∘f (H ∘f G) ∘f F : ap (λx, K ∘f x) !functor.assoc ... = (K ∘f H ∘f G) ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : ap (λx, x ∘f F) !functor.assoc) := begin have lem1 : Π{F₁ F₂ : A ⇒ D} (p : F₁ = F₂) (a : A), ap010 to_fun_ob (ap (λx, K ∘f x) p) a = ap (to_fun_ob K) (ap010 to_fun_ob p a), by intros; cases p; esimp, have lem2 : Π{F₁ F₂ : B ⇒ E} (p : F₁ = F₂) (a : A), ap010 to_fun_ob (ap (λx, x ∘f F) p) a = ap010 to_fun_ob p (F a), by intros; cases p; esimp, apply functor_eq2, intro a, esimp, rewrite [+ap010_con,lem1,lem2, ap010_assoc K H (G ∘f F) a, ap010_assoc (K ∘f H) G F a, ap010_assoc H G F a, ap010_assoc K H G (F a), ap010_assoc K (H ∘f G) F a], end end functor