/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import types.trunc types.pi arity open eq is_trunc pi namespace category /- Just as in Coq-HoTT we add two redundant fields to precategories: assoc' and id_id. The first is to make (Cᵒᵖ)ᵒᵖ = C definitionally when C is a constructor. The second is to ensure that the functor from the terminal category 1 ⇒ Cᵒᵖ is opposite to the functor 1 ⇒ C. -/ structure precategory [class] (ob : Type) : Type := mk' :: (hom : ob → ob → Type) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (assoc' : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp (comp h g) f = comp h (comp g f)) (id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f) (id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f) (id_id : Π (a : ob), comp !ID !ID = ID a) (is_hset_hom : Π(a b : ob), is_hset (hom a b)) attribute precategory [multiple_instances] attribute precategory.is_hset_hom [instance] infixr ∘ := precategory.comp -- input ⟶ using \--> (this is a different arrow than \-> (→)) infixl [parsing_only] ` ⟶ `:25 := precategory.hom namespace hom infixl ` ⟶ `:25 := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b end hom abbreviation hom [unfold 2] := @precategory.hom abbreviation comp [unfold 2] := @precategory.comp abbreviation ID [unfold 2] := @precategory.ID abbreviation assoc [unfold 2] := @precategory.assoc abbreviation assoc' [unfold 2] := @precategory.assoc' abbreviation id_left [unfold 2] := @precategory.id_left abbreviation id_right [unfold 2] := @precategory.id_right abbreviation id_id [unfold 2] := @precategory.id_id abbreviation is_hset_hom [unfold 2] := @precategory.is_hset_hom -- the constructor you want to use in practice protected definition precategory.mk [constructor] {ob : Type} (hom : ob → ob → Type) [hset : Π (a b : ob), is_hset (hom a b)] (comp : Π ⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (ass : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (idl : Π ⦃a b : ob⦄ (f : hom a b), comp (ID b) f = f) (idr : Π ⦃a b : ob⦄ (f : hom a b), comp f (ID a) = f) : precategory ob := precategory.mk' hom comp ID ass (λa b c d h g f, !ass⁻¹) idl idr (λa, !idl) hset section basic_lemmas variables {ob : Type} [C : precategory ob] variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a} include C definition id [reducible] [unfold 2] := ID a definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right definition comp_id_eq_id_comp (f : hom a b) : f ∘ id = id ∘ f := !id_right ⬝ !id_left⁻¹ definition id_comp_eq_comp_id (f : hom a b) : id ∘ f = f ∘ id := !id_left ⬝ !id_right⁻¹ definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : by rewrite id_right ... = id : by rewrite H definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : by rewrite id_left ... = id : by rewrite H definition homset [reducible] [constructor] (x y : ob) : hset := hset.mk (hom x y) _ end basic_lemmas section squares parameters {ob : Type} [C : precategory ob] local infixl ` ⟶ `:25 := @precategory.hom ob C local infixr ∘ := @precategory.comp ob C _ _ _ definition compose_squares {xa xb xc ya yb yc : ob} {xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb} {wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb) : wc ∘ (xg ∘ xf) = (yg ∘ yf) ∘ wa := calc wc ∘ (xg ∘ xf) = (wc ∘ xg) ∘ xf : by rewrite assoc ... = (yg ∘ wb) ∘ xf : by rewrite xybc ... = yg ∘ (wb ∘ xf) : by rewrite assoc ... = yg ∘ (yf ∘ wa) : by rewrite xyab ... = (yg ∘ yf) ∘ wa : by rewrite assoc definition compose_squares_2x2 {xa xb xc ya yb yc za zb zc : ob} {xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb} {zg : zb ⟶ zc} {zf : za ⟶ zb} {va : ya ⟶ za} {vb : yb ⟶ zb} {vc : yc ⟶ zc} {wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb) (yzab : vb ∘ yf = zf ∘ va) (yzbc : vc ∘ yg = zg ∘ vb) : (vc ∘ wc) ∘ (xg ∘ xf) = (zg ∘ zf) ∘ (va ∘ wa) := calc (vc ∘ wc) ∘ (xg ∘ xf) = vc ∘ (wc ∘ (xg ∘ xf)) : by rewrite (assoc vc wc _) ... = vc ∘ ((yg ∘ yf) ∘ wa) : by rewrite (compose_squares xyab xybc) ... = (vc ∘ (yg ∘ yf)) ∘ wa : by rewrite assoc ... = ((zg ∘ zf) ∘ va) ∘ wa : by rewrite (compose_squares yzab yzbc) ... = (zg ∘ zf) ∘ (va ∘ wa) : by rewrite assoc definition square_precompose {xa xb xc yb yc : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (xf : xa ⟶ xb) : wc ∘ xg ∘ xf = yg ∘ wb ∘ xf := calc wc ∘ xg ∘ xf = (wc ∘ xg) ∘ xf : by rewrite assoc ... = (yg ∘ wb) ∘ xf : by rewrite H ... = yg ∘ wb ∘ xf : by rewrite assoc definition square_postcompose {xb xc yb yc yd : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) : (yh ∘ wc) ∘ xg = (yh ∘ yg) ∘ wb := calc (yh ∘ wc) ∘ xg = yh ∘ wc ∘ xg : by rewrite assoc ... = yh ∘ yg ∘ wb : by rewrite H ... = (yh ∘ yg) ∘ wb : by rewrite assoc definition square_prepostcompose {xa xb xc yb yc yd : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) (xf : xa ⟶ xb) : (yh ∘ wc) ∘ (xg ∘ xf) = (yh ∘ yg) ∘ (wb ∘ xf) := square_precompose (square_postcompose H yh) xf end squares structure Precategory : Type := (carrier : Type) (struct : precategory carrier) definition precategory.Mk [reducible] [constructor] {ob} (C) : Precategory := Precategory.mk ob C definition precategory.MK [reducible] [constructor] (a b c d e f g h) : Precategory := Precategory.mk a (@precategory.mk a b c d e f g h) abbreviation carrier := @Precategory.carrier attribute Precategory.carrier [coercion] attribute Precategory.struct [instance] [priority 10000] [coercion] -- definition precategory.carrier [coercion] [reducible] := Precategory.carrier -- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct notation g ` ∘[`:60 C:0 `] `:0 f:60 := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f -- TODO: make this left associative definition Precategory.eta (C : Precategory) : Precategory.mk C C = C := Precategory.rec (λob c, idp) C /-Characterization of paths between precategories-/ definition precategory_mk'_eq (ob : Type) (hom1 : ob → ob → Type) (hom2 : ob → ob → Type) (homH1 : Π(a b : ob), is_hset (hom1 a b)) (homH2 : Π(a b : ob), is_hset (hom2 a b)) (comp1 : Π⦃a b c : ob⦄, hom1 b c → hom1 a b → hom1 a c) (comp2 : Π⦃a b c : ob⦄, hom2 b c → hom2 a b → hom2 a c) (ID1 : Π (a : ob), hom1 a a) (ID2 : Π (a : ob), hom2 a a) (assoc1 : Π ⦃a b c d : ob⦄ (h : hom1 c d) (g : hom1 b c) (f : hom1 a b), comp1 h (comp1 g f) = comp1 (comp1 h g) f) (assoc2 : Π ⦃a b c d : ob⦄ (h : hom2 c d) (g : hom2 b c) (f : hom2 a b), comp2 h (comp2 g f) = comp2 (comp2 h g) f) (assoc1' : Π ⦃a b c d : ob⦄ (h : hom1 c d) (g : hom1 b c) (f : hom1 a b), comp1 (comp1 h g) f = comp1 h (comp1 g f)) (assoc2' : Π ⦃a b c d : ob⦄ (h : hom2 c d) (g : hom2 b c) (f : hom2 a b), comp2 (comp2 h g) f = comp2 h (comp2 g f)) (id_left1 : Π ⦃a b : ob⦄ (f : hom1 a b), comp1 !ID1 f = f) (id_left2 : Π ⦃a b : ob⦄ (f : hom2 a b), comp2 !ID2 f = f) (id_right1 : Π ⦃a b : ob⦄ (f : hom1 a b), comp1 f !ID1 = f) (id_right2 : Π ⦃a b : ob⦄ (f : hom2 a b), comp2 f !ID2 = f) (id_id1 : Π (a : ob), comp1 !ID1 !ID1 = ID1 a) (id_id2 : Π (a : ob), comp2 !ID2 !ID2 = ID2 a) (p : hom1 = hom2) (q : p ▸ comp1 = comp2) (r : p ▸ ID1 = ID2) : precategory.mk' hom1 comp1 ID1 assoc1 assoc1' id_left1 id_right1 id_id1 homH1 = precategory.mk' hom2 comp2 ID2 assoc2 assoc2' id_left2 id_right2 id_id2 homH2 := begin cases p, cases q, cases r, apply (ap0111111 (precategory.mk' hom2 comp2 ID2)), repeat (apply is_hprop.elim), end definition precategory_eq (ob : Type) (C D : precategory ob) (p : @hom ob C = @hom ob D) (q : transport (λ x, Πa b c, x b c → x a b → x a c) p (@comp ob C) = @comp ob D) (r : transport (λ x, Πa, x a a) p (@ID ob C) = @ID ob D) : C = D := begin cases C, cases D, apply precategory_mk'_eq, apply q, apply r, end definition precategory_mk_eq (ob : Type) (hom1 : ob → ob → Type) (hom2 : ob → ob → Type) (homH1 : Π(a b : ob), is_hset (hom1 a b)) (homH2 : Π(a b : ob), is_hset (hom2 a b)) (comp1 : Π⦃a b c : ob⦄, hom1 b c → hom1 a b → hom1 a c) (comp2 : Π⦃a b c : ob⦄, hom2 b c → hom2 a b → hom2 a c) (ID1 : Π (a : ob), hom1 a a) (ID2 : Π (a : ob), hom2 a a) (assoc1 : Π ⦃a b c d : ob⦄ (h : hom1 c d) (g : hom1 b c) (f : hom1 a b), comp1 h (comp1 g f) = comp1 (comp1 h g) f) (assoc2 : Π ⦃a b c d : ob⦄ (h : hom2 c d) (g : hom2 b c) (f : hom2 a b), comp2 h (comp2 g f) = comp2 (comp2 h g) f) (id_left1 : Π ⦃a b : ob⦄ (f : hom1 a b), comp1 !ID1 f = f) (id_left2 : Π ⦃a b : ob⦄ (f : hom2 a b), comp2 !ID2 f = f) (id_right1 : Π ⦃a b : ob⦄ (f : hom1 a b), comp1 f !ID1 = f) (id_right2 : Π ⦃a b : ob⦄ (f : hom2 a b), comp2 f !ID2 = f) (p : Π (a b : ob), hom1 a b = hom2 a b) (q : transport (λ x, Π a b c, x b c → x a b → x a c) (eq_of_homotopy (λ a, eq_of_homotopy (λ b, p a b))) @comp1 = @comp2) (r : transport (λ x, Π a, x a a) (eq_of_homotopy (λ (x : ob), eq_of_homotopy (λ (x_1 : ob), p x x_1))) ID1 = ID2) : precategory.mk hom1 comp1 ID1 assoc1 id_left1 id_right1 = precategory.mk hom2 comp2 ID2 assoc2 id_left2 id_right2 := begin fapply precategory_eq, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, exact (p _ _), exact q, exact r, end definition Precategory_eq (C D : Precategory) (p : carrier C = carrier D) (q : p ▸ (Precategory.struct C) = Precategory.struct D) : C = D := begin cases C, cases D, cases p, cases q, apply idp, end end category