-- Test [light] annotation -- Remark: it will take some additional work to get ⁻¹ to rewrite well -- when there is a proof obligation. import algebra.ring algebra.field data.set data.finset open algebra attribute neg [light 3] attribute inv [light 3] attribute add.right_inv [simp] attribute add_neg_cancel_left [simp] attribute mul.right_inv [simp] attribute mul_inv_cancel_left [simp] open simplifier.unit simplifier.ac namespace ag universe l constants (A : Type.{l}) (s1 : add_comm_group A) (s2 : has_one A) attribute s1 [instance] attribute s2 [instance] constants (x y z w v : A) #simplify eq env 0 x + y + - x + -y + z + -z #simplify eq env 0 -100 + -v + -v + x + -v + y + - x + -y + z + -z + v + v + v + 100 end ag namespace mg universe l constants (A : Type.{l}) (s1 : comm_group A) (s2 : has_add A) attribute s1 [instance] attribute s2 [instance] constants (x y z w v : A) #simplify eq env 0 x⁻¹ * y⁻¹ * z⁻¹ * 100⁻¹ * x * y * z * 100 end mg namespace s open set universe l constants (A : Type.{l}) (x y z v w : set A) attribute compl [light 2] -- TODO(dhs, leo): Where do we put this group of simp rules? attribute union_compl_self [simp] lemma union_comp_self_left [simp] {X : Type} (s t : set X) : s ∪ (-s ∪ t)= univ := sorry attribute union_comm [simp] attribute union_assoc [simp] attribute union_left_comm [simp] #simplify eq env 0 x ∪ y ∪ z ∪ -x attribute inter_compl_self [simp] lemma inter_compl_self_left [simp] {X : Type} (s t : set X) : s ∩ (-s ∩ t)= empty := sorry attribute inter_comm [simp] attribute inter_assoc [simp] attribute inter_left_comm [simp] #simplify eq env 0 x ∩ y ∩ z ∩ -x end s