/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Binomial coefficients, "n choose k". -/ import data.nat.div data.nat.fact data.finset open decidable namespace nat /- choose -/ definition choose : ℕ → ℕ → ℕ | 0 0 := 1 | 0 (succ k) := 0 | (succ n) 0 := 1 | (succ n) (succ k) := choose n (succ k) + choose n k theorem choose_zero_right (n : ℕ) : choose n 0 = 1 := nat.cases_on n rfl (take m, rfl) theorem choose_zero_succ (k : ℕ) : choose 0 (succ k) = 0 := rfl theorem choose_succ_succ (n k : ℕ) : choose (succ n) (succ k) = choose n (succ k) + choose n k := rfl theorem choose_eq_zero_of_lt {n : ℕ} : ∀{k : ℕ}, n < k → choose n k = 0 := nat.induction_on n (take k, assume H : 0 < k, obtain k' (H : k = succ k'), from exists_eq_succ_of_pos H, by rewrite H) (take n', assume IH: ∀ k, n' < k → choose n' k = 0, take k, suppose succ n' < k, obtain k' (keq : k = succ k'), from exists_eq_succ_of_lt this, have n' < k', by rewrite keq at this; apply lt_of_succ_lt_succ this, by rewrite [keq, choose_succ_succ, IH _ this, IH _ (lt.trans this !lt_succ_self)]) theorem choose_self (n : ℕ) : choose n n = 1 := begin induction n with [n, ih], {apply rfl}, rewrite [choose_succ_succ, ih, choose_eq_zero_of_lt !lt_succ_self] end theorem choose_succ_self (n : ℕ) : choose (succ n) n = succ n := begin induction n with [n, ih], {apply rfl}, rewrite [choose_succ_succ, ih, choose_self, add.comm] end theorem choose_one_right (n : ℕ) : choose n 1 = n := begin induction n with [n, ih], {apply rfl}, change choose (succ n) (succ 0) = succ n, krewrite [choose_succ_succ, ih, choose_zero_right] end theorem choose_pos {n : ℕ} : ∀ {k : ℕ}, k ≤ n → choose n k > 0 := begin induction n with [n, ih], {intros [k, H], have k = 0, from eq_of_le_of_ge H !zero_le, subst k, rewrite choose_zero_right; apply zero_lt_one}, intro k, cases k with k, {intros, rewrite [choose_zero_right], apply zero_lt_one}, suppose succ k ≤ succ n, have k ≤ n, from le_of_succ_le_succ this, by rewrite [choose_succ_succ]; apply add_pos_right (ih this) end -- A key identity. The proof is subtle. theorem succ_mul_choose_eq (n : ℕ) : ∀ k, succ n * (choose n k) = choose (succ n) (succ k) * succ k := begin induction n with [n, ih], {intro k, cases k with k', {krewrite [*choose_self, one_mul, mul_one]}, {have H : 1 < succ (succ k'), from succ_lt_succ !zero_lt_succ, krewrite [one_mul, choose_zero_succ, choose_eq_zero_of_lt H, zero_mul]}}, intro k, cases k with k', {krewrite [choose_zero_right, choose_one_right]}, rewrite [choose_succ_succ (succ n), right_distrib, -ih (succ k')], rewrite [choose_succ_succ at {1}, left_distrib, *succ_mul (succ n), mul_succ, -ih k'], rewrite [*add.assoc, add.left_comm (choose n _)] end theorem choose_mul_fact_mul_fact {n : ℕ} : ∀ {k : ℕ}, k ≤ n → choose n k * fact k * fact (n - k) = fact n := begin induction n using nat.strong_induction_on with [n, ih], cases n with n, {intro k H, have k = 0, from eq_zero_of_le_zero H, rewrite this}, intro k, intro H, -- k ≤ n, cases k with k, {rewrite [choose_zero_right, fact_zero, *one_mul]}, have k ≤ n, from le_of_succ_le_succ H, show choose (succ n) (succ k) * fact (succ k) * fact (succ n - succ k) = fact (succ n), from begin rewrite [succ_sub_succ, fact_succ, -mul.assoc, -succ_mul_choose_eq], rewrite [fact_succ n, -ih n !lt_succ_self this, *mul.assoc] end end theorem choose_def_alt {n k : ℕ} (H : k ≤ n) : choose n k = fact n / (fact k * fact (n -k)) := eq.symm (nat.div_eq_of_eq_mul_left (mul_pos !fact_pos !fact_pos) (by rewrite [-mul.assoc, choose_mul_fact_mul_fact H])) theorem fact_mul_fact_dvd_fact {n k : ℕ} (H : k ≤ n) : fact k * fact (n - k) ∣ fact n := by rewrite [-choose_mul_fact_mul_fact H, mul.assoc]; apply dvd_mul_left open finset /- the number of subsets of s of size k is n choose k -/ section card_subsets variables {A : Type} [deceqA : decidable_eq A] include deceqA private theorem aux₀ (s : finset A) : {t ∈ powerset s | card t = 0} = '{∅} := ext (take t, iff.intro (assume H, have t = ∅, from eq_empty_of_card_eq_zero (of_mem_sep H), show t ∈ '{ ∅ }, by rewrite [this, mem_singleton_iff]) (assume H, have t = ∅, by rewrite mem_singleton_iff at H; assumption, by substvars; exact mem_sep_of_mem !empty_mem_powerset rfl)) private theorem aux₁ (k : ℕ) : {t ∈ powerset (∅ : finset A) | card t = succ k} = ∅ := eq_empty_of_forall_not_mem (take t, assume H, have t ∈ powerset ∅, from mem_of_mem_sep H, have t = ∅, by rewrite [powerset_empty at this, mem_singleton_iff at this]; assumption, have card (∅ : finset A) = succ k, by rewrite -this; apply of_mem_sep H, nat.no_confusion this) private theorem aux₂ {a : A} {s t : finset A} (anins : a ∉ s) (tpows : t ∈ powerset s) : a ∉ t := suppose a ∈ t, have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset tpows) this, anins this private theorem aux₃ {a : A} {s t : finset A} (anins : a ∉ s) (k : ℕ) : t ∈ (insert a) ' (powerset s) ∧ card t = succ k ↔ t ∈ (insert a) ' {t' ∈ powerset s | card t' = k} := iff.intro (assume H, obtain H' cardt, from H, obtain t' [(t'pows : t' ∈ powerset s) (teq : insert a t' = t)], from exists_of_mem_image H', have aint : a ∈ t, by rewrite -teq; apply mem_insert, have anint' : a ∉ t', from (assume aint', have a ∈ s, from mem_of_subset_of_mem (subset_of_mem_powerset t'pows) aint', anins this), have t' = erase a t, by rewrite [-teq, erase_insert (aux₂ anins t'pows)], have card t' = k, by rewrite [this, card_erase_of_mem aint, cardt], mem_image (mem_sep_of_mem t'pows this) teq) (assume H, obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image H, have t'pows : t' ∈ powerset s, from mem_of_mem_sep Ht', have cardt' : card t' = k, from of_mem_sep Ht', and.intro (show t ∈ (insert a) ' (powerset s), from mem_image t'pows teq) (show card t = succ k, by rewrite [-teq, card_insert_of_not_mem (aux₂ anins t'pows), cardt'])) private theorem aux₄ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) : {t ∈ powerset (insert a s)| card t = succ k} = {t ∈ powerset s | card t = succ k} ∪ (insert a) ' {t ∈ powerset s | card t = k} := begin apply ext, intro t, rewrite [powerset_insert anins, mem_union_iff, *mem_sep_iff, mem_union_iff, and.right_distrib, aux₃ anins] end private theorem aux₅ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) : {t ∈ powerset s | card t = succ k} ∩ (insert a) ' {t ∈ powerset s | card t = k} = ∅ := inter_eq_empty (take t, assume Ht₁ Ht₂, have tpows : t ∈ powerset s, from mem_of_mem_sep Ht₁, have anint : a ∉ t, from aux₂ anins tpows, obtain t' [Ht' (teq : insert a t' = t)], from exists_of_mem_image Ht₂, have aint : a ∈ t, by rewrite -teq; apply mem_insert, show false, from anint aint) private theorem aux₆ {a : A} {s : finset A} (anins : a ∉ s) (k : ℕ) : card ((insert a) ' {t ∈ powerset s | card t = k}) = card {t ∈ powerset s | card t = k} := have set.inj_on (insert a) (ts {t ∈ powerset s| card t = k}), from take t₁ t₂, assume Ht₁ Ht₂, assume Heq : insert a t₁ = insert a t₂, have t₁ ∈ powerset s, from mem_of_mem_sep Ht₁, have anint₁ : a ∉ t₁, from aux₂ anins this, have t₂ ∈ powerset s, from mem_of_mem_sep Ht₂, have anint₂ : a ∉ t₂, from aux₂ anins this, calc t₁ = erase a (insert a t₁) : by rewrite (erase_insert anint₁) ... = erase a (insert a t₂) : Heq ... = t₂ : by rewrite (erase_insert anint₂), card_image_eq_of_inj_on this theorem card_subsets (s : finset A) : ∀k, card {t ∈ powerset s | card t = k} = choose (card s) k := begin induction s with a s anins ih, {intro k, cases k with k, {rewrite aux₀}, rewrite aux₁}, intro k, cases k with k, {rewrite [aux₀, choose_zero_right]}, rewrite [*(card_insert_of_not_mem anins), aux₄ anins, card_union_of_disjoint (aux₅ anins k), aux₆ anins k, *ih] end end card_subsets end nat