/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Limits in a category -/ import ..constructions.cone ..constructions.discrete ..constructions.product ..constructions.finite_cats ..category ..constructions.functor open is_trunc functor nat_trans eq namespace category variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory) include C definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c) definition is_contr_of_is_terminal (c d : ob) [H : is_terminal d] : is_contr (c ⟶ d) := H c local attribute is_contr_of_is_terminal [instance] definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' := !center definition hom_terminal_eq [H : is_terminal c'] (f f' : c ⟶ c') : f = f' := !is_prop.elim definition eq_terminal_morphism [H : is_terminal c'] (f : c ⟶ c') : f = terminal_morphism c c' := !is_prop.elim definition terminal_iso_terminal (c c' : ob) [H : is_terminal c] [K : is_terminal c'] : c ≅ c' := iso.MK !terminal_morphism !terminal_morphism !hom_terminal_eq !hom_terminal_eq local attribute is_terminal [reducible] theorem is_prop_is_terminal [instance] : is_prop (is_terminal c) := _ omit C structure has_terminal_object [class] (D : Precategory) := (d : D) (is_terminal : is_terminal d) definition terminal_object [reducible] [unfold 2] := @has_terminal_object.d attribute has_terminal_object.is_terminal [instance] variable {D} definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D) : @terminal_object D H₁ ≅ @terminal_object D H₂ := !terminal_iso_terminal theorem is_prop_has_terminal_object [instance] (D : Category) : is_prop (has_terminal_object D) := begin apply is_prop.mk, intro t₁ t₂, induction t₁ with d₁ H₁, induction t₂ with d₂ H₂, assert p : d₁ = d₂, { apply eq_of_iso, apply terminal_iso_terminal}, induction p, exact ap _ !is_prop.elim end variable (D) definition has_limits_of_shape [class] := Π(F : I ⇒ D), has_terminal_object (cone F) /- The next definitions states that a category is complete with respect to diagrams in a certain universe. "is_complete.{o₁ h₁ o₂ h₂}" means that D is complete with respect to diagrams with shape in Precategory.{o₂ h₂} -/ definition is_complete.{o₁ h₁ o₂ h₂} [class] (D : Precategory.{o₁ h₁}) := Π(I : Precategory.{o₂ h₂}), has_limits_of_shape D I definition has_limits_of_shape_of_is_complete [instance] [H : is_complete D] (I : Precategory) : has_limits_of_shape D I := H I section open pi theorem is_prop_has_limits_of_shape [instance] (D : Category) (I : Precategory) : is_prop (has_limits_of_shape D I) := by apply is_trunc_pi; intro F; exact is_prop_has_terminal_object (Category_cone F) local attribute is_complete [reducible] theorem is_prop_is_complete [instance] (D : Category) : is_prop (is_complete D) := _ end variables {D I} definition has_terminal_object_cone [H : has_limits_of_shape D I] (F : I ⇒ D) : has_terminal_object (cone F) := H F local attribute has_terminal_object_cone [instance] variables (F : I ⇒ D) [H : has_limits_of_shape D I] {i j : I} include H definition limit_cone : cone F := !terminal_object definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) := has_terminal_object.is_terminal _ section specific_limit omit H variable {F} variables (x : cone_obj F) [K : is_terminal x] include K definition to_limit_object : D := cone_to_obj x definition to_limit_nat_trans : constant_functor I (to_limit_object x) ⟹ F := cone_to_nat x definition to_limit_morphism (i : I) : to_limit_object x ⟶ F i := to_limit_nat_trans x i theorem to_limit_commute {i j : I} (f : i ⟶ j) : to_fun_hom F f ∘ to_limit_morphism x i = to_limit_morphism x j := naturality (to_limit_nat_trans x) f ⬝ !id_right definition to_limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F := cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹)) definition to_hom_limit {d : D} (η : Πi, d ⟶ F i) (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ to_limit_object x := cone_to_hom (terminal_morphism (to_limit_cone_obj x p) x) theorem to_hom_limit_commute {d : D} (η : Πi, d ⟶ F i) (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I) : to_limit_morphism x i ∘ to_hom_limit x η p = η i := cone_to_eq (terminal_morphism (to_limit_cone_obj x p) x) i definition to_limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x} (q : Πi, to_limit_morphism x i ∘ h = η i) : cone_hom (to_limit_cone_obj x p) x := cone_hom.mk h q variable {x} theorem to_eq_hom_limit {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ to_limit_object x} (q : Πi, to_limit_morphism x i ∘ h = η i) : h = to_hom_limit x η p := ap cone_to_hom (eq_terminal_morphism (to_limit_cone_hom x p q)) theorem to_limit_cone_unique {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h₁ : d ⟶ to_limit_object x} (q₁ : Πi, to_limit_morphism x i ∘ h₁ = η i) {h₂ : d ⟶ to_limit_object x} (q₂ : Πi, to_limit_morphism x i ∘ h₂ = η i): h₁ = h₂ := to_eq_hom_limit p q₁ ⬝ (to_eq_hom_limit p q₂)⁻¹ omit K definition to_limit_object_iso_to_limit_object [constructor] (x y : cone_obj F) [K : is_terminal x] [L : is_terminal y] : to_limit_object x ≅ to_limit_object y := cone_iso_pr1 !terminal_iso_terminal end specific_limit /- TODO: relate below definitions to above definitions. However, type class resolution seems to fail... -/ definition limit_object : D := cone_to_obj (limit_cone F) definition limit_nat_trans : constant_functor I (limit_object F) ⟹ F := cone_to_nat (limit_cone F) definition limit_morphism (i : I) : limit_object F ⟶ F i := limit_nat_trans F i variable {H} theorem limit_commute {i j : I} (f : i ⟶ j) : to_fun_hom F f ∘ limit_morphism F i = limit_morphism F j := naturality (limit_nat_trans F) f ⬝ !id_right variable [H] definition limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F := cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹)) variable {H} definition hom_limit {d : D} (η : Πi, d ⟶ F i) (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ limit_object F := cone_to_hom (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i) (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I) : limit_morphism F i ∘ hom_limit F η p = η i := cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i definition limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F} (q : Πi, limit_morphism F i ∘ h = η i) : cone_hom (limit_cone_obj F p) (limit_cone F) := cone_hom.mk h q variable {F} theorem eq_hom_limit {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F} (q : Πi, limit_morphism F i ∘ h = η i) : h = hom_limit F η p := ap cone_to_hom (@eq_terminal_morphism _ _ _ _ (is_terminal_limit_cone _) (limit_cone_hom F p q)) theorem limit_cone_unique {d : D} {η : Πi, d ⟶ F i} (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h₁ : d ⟶ limit_object F} (q₁ : Πi, limit_morphism F i ∘ h₁ = η i) {h₂ : d ⟶ limit_object F} (q₂ : Πi, limit_morphism F i ∘ h₂ = η i): h₁ = h₂ := eq_hom_limit p q₁ ⬝ (eq_hom_limit p q₂)⁻¹ definition limit_hom_limit {F G : I ⇒ D} (η : F ⟹ G) : limit_object F ⟶ limit_object G := hom_limit _ (λi, η i ∘ limit_morphism F i) abstract by intro i j f; rewrite [assoc,naturality,-assoc,limit_commute] end theorem limit_hom_limit_commute {F G : I ⇒ D} (η : F ⟹ G) : limit_morphism G i ∘ limit_hom_limit η = η i ∘ limit_morphism F i := !hom_limit_commute -- theorem hom_limit_commute {d : D} (η : Πi, d ⟶ F i) -- (p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I) -- : limit_morphism F i ∘ hom_limit F η p = η i := -- cone_to_eq (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i omit H variable (F) definition limit_object_iso_limit_object [constructor] (H₁ H₂ : has_limits_of_shape D I) : @(limit_object F) H₁ ≅ @(limit_object F) H₂ := cone_iso_pr1 !terminal_object_iso_terminal_object definition limit_functor [constructor] (D I : Precategory) [H : has_limits_of_shape D I] : D ^c I ⇒ D := begin fapply functor.mk: esimp, { intro F, exact limit_object F}, { apply @limit_hom_limit}, { intro F, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i, apply comp_id_eq_id_comp}, { intro F G H η θ, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i, rewrite [assoc, hom_limit_commute, -assoc, hom_limit_commute, assoc]} end section bin_products open bool prod.ops definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2 variables [K : has_binary_products D] (d d' : D) include K definition product_object : D := limit_object (c2_functor D d d') infixr ` ×l `:75 := product_object definition pr1 : d ×l d' ⟶ d := limit_morphism (c2_functor D d d') ff definition pr2 : d ×l d' ⟶ d' := limit_morphism (c2_functor D d d') tt variables {d d'} definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d ×l d' := hom_limit (c2_functor D d d') (bool.rec f g) (by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left) theorem pr1_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr1 ∘ hom_product f g = f := hom_limit_commute (c2_functor D d d') (bool.rec f g) _ ff theorem pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g := hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d ×l d'} (p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g := eq_hom_limit _ (bool.rec p q) theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h₁ : x ⟶ d ×l d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g) {h₂ : x ⟶ d ×l d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g) : h₁ = h₂ := eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹ variable (D) -- TODO: define this in terms of limit_functor and functor_two_left (in exponential_laws) definition product_functor [constructor] : D ×c D ⇒ D := functor.mk (λx, product_object x.1 x.2) (λx y f, hom_product (f.1 ∘ !pr1) (f.2 ∘ !pr2)) abstract begin intro x, symmetry, apply eq_hom_product: apply comp_id_eq_id_comp end end abstract begin intro x y z g f, symmetry, apply eq_hom_product, rewrite [assoc,pr1_hom_product,-assoc,pr1_hom_product,assoc], rewrite [assoc,pr2_hom_product,-assoc,pr2_hom_product,assoc] end end omit K variables {D} (d d') definition product_object_iso_product_object [constructor] (H₁ H₂ : has_binary_products D) : @product_object D H₁ d d' ≅ @product_object D H₂ d d' := limit_object_iso_limit_object _ H₁ H₂ end bin_products section equalizers open bool prod.ops sum equalizer_category_hom definition has_equalizers [reducible] (D : Precategory) := has_limits_of_shape D equalizer_category variables [K : has_equalizers D] include K variables {d d' x : D} (f g : d ⟶ d') definition equalizer_object : D := limit_object (equalizer_category_functor D f g) definition equalizer : equalizer_object f g ⟶ d := limit_morphism (equalizer_category_functor D f g) ff theorem equalizes : f ∘ equalizer f g = g ∘ equalizer f g := limit_commute (equalizer_category_functor D f g) (inl f1) ⬝ (limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹ variables {f g} definition hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : x ⟶ equalizer_object f g := hom_limit (equalizer_category_functor D f g) (bool.rec h (g ∘ h)) begin intro b₁ b₂ i; induction i with j j: induction j, -- report(?) "esimp" is super slow here exact p, reflexivity, apply id_left end theorem equalizer_hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : equalizer f g ∘ hom_equalizer h p = h := hom_limit_commute (equalizer_category_functor D f g) (bool.rec h (g ∘ h)) _ ff theorem eq_hom_equalizer {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i : x ⟶ equalizer_object f g} (q : equalizer f g ∘ i = h) : i = hom_equalizer h p := eq_hom_limit _ (bool.rec q begin refine ap (λx, x ∘ i) (limit_commute (equalizer_category_functor D f g) (inl f2))⁻¹ ⬝ _, refine !assoc⁻¹ ⬝ _, exact ap (λx, _ ∘ x) q end) theorem equalizer_cone_unique {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i₁ : x ⟶ equalizer_object f g} (q₁ : equalizer f g ∘ i₁ = h) {i₂ : x ⟶ equalizer_object f g} (q₂ : equalizer f g ∘ i₂ = h) : i₁ = i₂ := eq_hom_equalizer p q₁ ⬝ (eq_hom_equalizer p q₂)⁻¹ omit K variables (f g) definition equalizer_object_iso_equalizer_object [constructor] (H₁ H₂ : has_equalizers D) : @equalizer_object D H₁ _ _ f g ≅ @equalizer_object D H₂ _ _ f g := limit_object_iso_limit_object _ H₁ H₂ end equalizers section pullbacks open sum prod.ops pullback_category_ob pullback_category_hom definition has_pullbacks [reducible] (D : Precategory) := has_limits_of_shape D pullback_category variables [K : has_pullbacks D] include K variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₃) (g : d₂ ⟶ d₃) definition pullback_object : D := limit_object (pullback_category_functor D f g) definition pullback : pullback_object f g ⟶ d₂ := limit_morphism (pullback_category_functor D f g) BL definition pullback_rev : pullback_object f g ⟶ d₁ := limit_morphism (pullback_category_functor D f g) TR theorem pullback_commutes : f ∘ pullback_rev f g = g ∘ pullback f g := limit_commute (pullback_category_functor D f g) (inl f1) ⬝ (limit_commute (pullback_category_functor D f g) (inl f2))⁻¹ variables {f g} definition hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂) : x ⟶ pullback_object f g := hom_limit (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) begin intro i₁ i₂ k; induction k with j j: induction j, exact p, reflexivity, apply id_left end theorem pullback_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂) : pullback f g ∘ hom_pullback h₁ h₂ p = h₂ := hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ BL theorem pullback_rev_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂) : pullback_rev f g ∘ hom_pullback h₁ h₂ p = h₁ := hom_limit_commute (pullback_category_functor D f g) (pullback_category_ob.rec h₁ h₂ (g ∘ h₂)) _ TR theorem eq_hom_pullback {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂) {k : x ⟶ pullback_object f g} (q : pullback f g ∘ k = h₂) (r : pullback_rev f g ∘ k = h₁) : k = hom_pullback h₁ h₂ p := eq_hom_limit _ (pullback_category_ob.rec r q begin refine ap (λx, x ∘ k) (limit_commute (pullback_category_functor D f g) (inl f2))⁻¹ ⬝ _, refine !assoc⁻¹ ⬝ _, exact ap (λx, _ ∘ x) q end) theorem pullback_cone_unique {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂) {k₁ : x ⟶ pullback_object f g} (q₁ : pullback f g ∘ k₁ = h₂) (r₁ : pullback_rev f g ∘ k₁ = h₁) {k₂ : x ⟶ pullback_object f g} (q₂ : pullback f g ∘ k₂ = h₂) (r₂ : pullback_rev f g ∘ k₂ = h₁) : k₁ = k₂ := (eq_hom_pullback p q₁ r₁) ⬝ (eq_hom_pullback p q₂ r₂)⁻¹ variables (f g) definition pullback_object_iso_pullback_object [constructor] (H₁ H₂ : has_pullbacks D) : @pullback_object D H₁ _ _ _ f g ≅ @pullback_object D H₂ _ _ _ f g := limit_object_iso_limit_object _ H₁ H₂ end pullbacks namespace ops infixr ×l := product_object end ops end category