/- Copyright (c) 2014-15 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Partially ported from Coq HoTT Theorems about sigma-types (dependent sums) -/ import types.prod open eq sigma sigma.ops equiv is_equiv function is_trunc sum unit namespace sigma variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a} definition destruct := @sigma.cases_on /- Paths in a sigma-type -/ protected definition eta [unfold 3] : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u | eta ⟨u₁, u₂⟩ := idp definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u | eta2 ⟨u₁, u₂, u₃⟩ := idp definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u | eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp definition dpair_eq_dpair [unfold 8] (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ := apo011 sigma.mk p q definition sigma_eq [unfold 3 4] (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v := by induction u; induction v; exact (dpair_eq_dpair p q) definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 := ap pr1 p postfix `..1`:(max+1) := eq_pr1 definition eq_pr2 [unfold 5] (p : u = v) : u.2 =[p..1] v.2 := by induction p; exact idpo postfix `..2`:(max+1) := eq_pr2 definition dpair_sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : ⟨(sigma_eq p q)..1, (sigma_eq p q)..2⟩ = ⟨p, q⟩ := by induction u; induction v;esimp at *;induction q;esimp definition sigma_eq_pr1 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..1 = p := (dpair_sigma_eq p q)..1 definition sigma_eq_pr2 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..2 =[sigma_eq_pr1 p q] q := (dpair_sigma_eq p q)..2 definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p := by induction p; induction u; reflexivity definition eq2_pr1 {p q : u = v} (r : p = q) : p..1 = q..1 := ap eq_pr1 r definition eq2_pr2 {p q : u = v} (r : p = q) : p..2 =[eq2_pr1 r] q..2 := !pathover_ap (apdo eq_pr2 r) definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : u.2 =[p] v.2) : transport (λx, B' x.1) (sigma_eq p q) = transport B' p := by induction u; induction v; esimp at *;induction q; reflexivity protected definition ap_pr1 (p : u = v) : ap (λx : sigma B, x.1) p = p..1 := idp /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ definition sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), u = v | sigma_eq_unc ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ definition dpair_sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), ⟨(sigma_eq_unc pq)..1, (sigma_eq_unc pq)..2⟩ = pq | dpair_sigma_eq_unc ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ definition sigma_eq_pr1_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_unc pq)..1 = pq.1 := (dpair_sigma_eq_unc pq)..1 definition sigma_eq_pr2_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_unc pq)..2 =[sigma_eq_pr1_unc pq] pq.2 := (dpair_sigma_eq_unc pq)..2 definition sigma_eq_eta_unc (p : u = v) : sigma_eq_unc ⟨p..1, p..2⟩ = p := sigma_eq_eta p definition tr_sigma_eq_pr1_unc {B' : A → Type} (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : transport (λx, B' x.1) (@sigma_eq_unc A B u v pq) = transport B' pq.1 := destruct pq tr_pr1_sigma_eq definition is_equiv_sigma_eq [instance] (u v : Σa, B a) : is_equiv (@sigma_eq_unc A B u v) := adjointify sigma_eq_unc (λp, ⟨p..1, p..2⟩) sigma_eq_eta_unc dpair_sigma_eq_unc definition sigma_eq_equiv (u v : Σa, B a) : (u = v) ≃ (Σ(p : u.1 = v.1), u.2 =[p] v.2) := (equiv.mk sigma_eq_unc _)⁻¹ᵉ definition dpair_eq_dpair_con (p1 : a = a' ) (q1 : b =[p1] b' ) (p2 : a' = a'') (q2 : b' =[p2] b'') : dpair_eq_dpair (p1 ⬝ p2) (q1 ⬝o q2) = dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 := by induction q1; induction q2; reflexivity definition sigma_eq_con (p1 : u.1 = v.1) (q1 : u.2 =[p1] v.2) (p2 : v.1 = w.1) (q2 : v.2 =[p2] w.2) : sigma_eq (p1 ⬝ p2) (q1 ⬝o q2) = sigma_eq p1 q1 ⬝ sigma_eq p2 q2 := by induction u; induction v; induction w; apply dpair_eq_dpair_con local attribute dpair_eq_dpair [reducible] definition dpair_eq_dpair_con_idp (p : a = a') (q : b =[p] b') : dpair_eq_dpair p q = dpair_eq_dpair p !pathover_tr ⬝ dpair_eq_dpair idp (pathover_idp_of_eq (tr_eq_of_pathover q)) := by induction q; reflexivity /- eq_pr1 commutes with the groupoid structure. -/ definition eq_pr1_idp (u : Σa, B a) : (refl u) ..1 = refl (u.1) := idp definition eq_pr1_con (p : u = v) (q : v = w) : (p ⬝ q) ..1 = (p..1) ⬝ (q..1) := !ap_con definition eq_pr1_inv (p : u = v) : p⁻¹ ..1 = (p..1)⁻¹ := !ap_inv /- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/ definition ap_dpair (q : b₁ = b₂) : ap (sigma.mk a) q = dpair_eq_dpair idp (pathover_idp_of_eq q) := by induction q; reflexivity /- Dependent transport is the same as transport along a sigma_eq. -/ definition transportD_eq_transport (p : a = a') (c : C a b) : p ▸D c = transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p !pathover_tr) c := by induction p; reflexivity definition sigma_eq_eq_sigma_eq {p1 q1 : a = a'} {p2 : b =[p1] b'} {q2 : b =[q1] b'} (r : p1 = q1) (s : p2 =[r] q2) : sigma_eq p1 p2 = sigma_eq q1 q2 := by induction s; reflexivity /- A path between paths in a total space is commonly shown component wise. -/ definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : p..2 =[r] q..2) : p = q := begin induction p, induction u with u1 u2, transitivity sigma_eq q..1 q..2, apply sigma_eq_eq_sigma_eq r s, apply sigma_eq_eta, end definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q := destruct rs sigma_eq2 definition ap_dpair_eq_dpair (f : Πa, B a → A') (p : a = a') (q : b =[p] b') : ap (sigma.rec f) (dpair_eq_dpair p q) = apo011 f p q := by induction q; reflexivity /- Transport -/ /- The concrete description of transport in sigmas (and also pis) is rather trickier than in the other types. In particular, these cannot be described just in terms of transport in simpler types; they require also the dependent transport [transportD]. In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/ definition sigma_transport (p : a = a') (bc : Σ(b : B a), C a b) : p ▸ bc = ⟨p ▸ bc.1, p ▸D bc.2⟩ := by induction p; induction bc; reflexivity /- The special case when the second variable doesn't depend on the first is simpler. -/ definition sigma_transport_nondep {B : Type} {C : A → B → Type} (p : a = a') (bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ := by induction p; induction bc; reflexivity /- Or if the second variable contains a first component that doesn't depend on the first. -/ definition sigma_transport2_nondep {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a') (bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ := begin induction p, induction bcd with b cd, induction cd, reflexivity end /- Pathovers -/ definition etao (p : a = a') (bc : Σ(b : B a), C a b) : bc =[p] ⟨p ▸ bc.1, p ▸D bc.2⟩ := by induction p; induction bc; apply idpo definition sigma_pathover (p : a = a') (u : Σ(b : B a), C a b) (v : Σ(b : B a'), C a' b) (r : u.1 =[p] v.1) (s : u.2 =[apo011 C p r] v.2) : u =[p] v := begin induction u, induction v, esimp at *, induction r, esimp [apo011] at s, induction s using idp_rec_on, apply idpo end /- TODO: * define the projections from the type u =[p] v * show that the uncurried version of sigma_pathover is an equivalence -/ /- Functorial action -/ variables (f : A → A') (g : Πa, B a → B' (f a)) definition sigma_functor [unfold 7] (u : Σa, B a) : Σa', B' a' := ⟨f u.1, g u.1 u.2⟩ definition total [reducible] [unfold 5] {B' : A → Type} (g : Πa, B a → B' a) (u : Σa, B a) : Σa', B' a' := sigma_functor id g u /- Equivalences -/ definition is_equiv_sigma_functor [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : is_equiv (sigma_functor f g) := adjointify (sigma_functor f g) (sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'), ((g (f⁻¹ a'))⁻¹ (transport B' (right_inv f a')⁻¹ b')))) abstract begin intro u', induction u' with a' b', apply sigma_eq (right_inv f a'), rewrite [▸*,right_inv (g (f⁻¹ a')),▸*], apply tr_pathover end end abstract begin intro u, induction u with a b, apply (sigma_eq (left_inv f a)), apply pathover_of_tr_eq, rewrite [▸*,adj f,-(fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹)), ▸*,tr_compose B' f,tr_inv_tr,left_inv] end end definition sigma_equiv_sigma_of_is_equiv [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : (Σa, B a) ≃ (Σa', B' a') := equiv.mk (sigma_functor f g) !is_equiv_sigma_functor definition sigma_equiv_sigma [constructor] (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) : (Σa, B a) ≃ (Σa', B' a') := sigma_equiv_sigma_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a)) definition sigma_equiv_sigma_right [constructor] {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a := sigma_equiv_sigma equiv.refl Hg definition sigma_equiv_sigma_left [constructor] (Hf : A ≃ A') : (Σa, B a) ≃ (Σa', B (to_inv Hf a')) := sigma_equiv_sigma Hf (λ a, equiv_ap B !right_inv⁻¹) definition ap_sigma_functor_eq_dpair (p : a = a') (q : b =[p] b') : ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover.rec_on q idpo) := by induction q; reflexivity -- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) -- : ap (sigma_functor f g) (sigma_eq p q) = -- sigma_eq (ap f p) -- ((tr_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) := -- by induction u; induction v; apply ap_sigma_functor_eq_dpair /- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/ definition is_equiv_pr1 [instance] [constructor] (B : A → Type) [H : Π a, is_contr (B a)] : is_equiv (@pr1 A B) := adjointify pr1 (λa, ⟨a, !center⟩) (λa, idp) (λu, sigma_eq idp (pathover_idp_of_eq !center_eq)) definition sigma_equiv_of_is_contr_right [constructor] [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A := equiv.mk pr1 _ /- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/ definition sigma_equiv_of_is_contr_left [constructor] (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A) := equiv.MK (λu, (center_eq u.1)⁻¹ ▸ u.2) (λb, ⟨!center, b⟩) abstract (λb, ap (λx, x ▸ b) !prop_eq_of_is_contr) end abstract (λu, sigma_eq !center_eq !tr_pathover) end /- Associativity -/ --this proof is harder than in Coq because we don't have eta definitionally for sigma definition sigma_assoc_equiv [constructor] (C : (Σa, B a) → Type) : (Σa b, C ⟨a, b⟩) ≃ (Σu, C u) := equiv.mk _ (adjointify (λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩) (λuc, ⟨uc.1.1, uc.1.2, !sigma.eta⁻¹ ▸ uc.2⟩) abstract begin intro uc, induction uc with u c, induction u, reflexivity end end abstract begin intro av, induction av with a v, induction v, reflexivity end end) open prod prod.ops definition assoc_equiv_prod [constructor] (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) := equiv.mk _ (adjointify (λav, ⟨(av.1, av.2.1), av.2.2⟩) (λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !prod.eta⁻¹ ▸ uc.2⟩) abstract proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed end abstract proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed end) /- Symmetry -/ definition comm_equiv_unc (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) := calc (Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod ... ≃ Σv, C (flip v) : sigma_equiv_sigma !prod_comm_equiv (λu, prod.destruct u (λa a', equiv.refl)) ... ≃ Σa' a, C (a, a') : assoc_equiv_prod definition sigma_comm_equiv [constructor] (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') := comm_equiv_unc (λu, C (prod.pr1 u) (prod.pr2 u)) definition equiv_prod [constructor] (A B : Type) : (Σ(a : A), B) ≃ A × B := equiv.mk _ (adjointify (λs, (s.1, s.2)) (λp, ⟨pr₁ p, pr₂ p⟩) proof (λp, prod.destruct p (λa b, idp)) qed proof (λs, destruct s (λa b, idp)) qed) definition comm_equiv_nondep (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A := calc (Σ(a : A), B) ≃ A × B : equiv_prod ... ≃ B × A : prod_comm_equiv ... ≃ Σ(b : B), A : equiv_prod definition sigma_assoc_comm_equiv {A : Type} (B C : A → Type) : (Σ(v : Σa, B a), C v.1) ≃ (Σ(u : Σa, C a), B u.1) := calc (Σ(v : Σa, B a), C v.1) ≃ (Σa (b : B a), C a) : !sigma_assoc_equiv⁻¹ᵉ ... ≃ (Σa, B a × C a) : sigma_equiv_sigma_right (λa, !equiv_prod) ... ≃ (Σa, C a × B a) : sigma_equiv_sigma_right (λa, !prod_comm_equiv) ... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !equiv_prod) ... ≃ (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv /- Interaction with other type constructors -/ definition sigma_empty_left [constructor] (B : empty → Type) : (Σx, B x) ≃ empty := begin fapply equiv.MK, { intro v, induction v, contradiction}, { intro x, contradiction}, { intro x, contradiction}, { intro v, induction v, contradiction}, end definition sigma_empty_right [constructor] (A : Type) : (Σ(a : A), empty) ≃ empty := begin fapply equiv.MK, { intro v, induction v, contradiction}, { intro x, contradiction}, { intro x, contradiction}, { intro v, induction v, contradiction}, end definition sigma_unit_left [constructor] (B : unit → Type) : (Σx, B x) ≃ B star := !sigma_equiv_of_is_contr_left definition sigma_unit_right [constructor] (A : Type) : (Σ(a : A), unit) ≃ A := !sigma_equiv_of_is_contr_right definition sigma_sum_left [constructor] (B : A + A' → Type) : (Σp, B p) ≃ (Σa, B (inl a)) + (Σa, B (inr a)) := begin fapply equiv.MK, { intro v, induction v with p b, induction p: append (apply inl) (apply inr); constructor; assumption }, { intro p, induction p with v v: induction v; constructor; assumption}, { intro p, induction p with v v: induction v; reflexivity}, { intro v, induction v with p b, induction p: reflexivity}, end definition sigma_sum_right [constructor] (B C : A → Type) : (Σa, B a + C a) ≃ (Σa, B a) + (Σa, C a) := begin fapply equiv.MK, { intro v, induction v with a p, induction p: append (apply inl) (apply inr); constructor; assumption}, { intro p, induction p with v v: induction v; constructor; append (apply inl) (apply inr); assumption}, { intro p, induction p with v v: induction v; reflexivity}, { intro v, induction v with a p, induction p: reflexivity}, end /- ** Universal mapping properties -/ /- *** The positive universal property. -/ section definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type) : is_equiv (sigma.rec : (Πa b, C ⟨a, b⟩) → Πab, C ab) := adjointify _ (λ g a b, g ⟨a, b⟩) (λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed) (λ f, refl f) definition equiv_sigma_rec (C : (Σa, B a) → Type) : (Π(a : A) (b: B a), C ⟨a, b⟩) ≃ (Πxy, C xy) := equiv.mk sigma.rec _ /- *** The negative universal property. -/ protected definition coind_unc (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A) : Σ(b : B a), C a b := ⟨fg.1 a, fg.2 a⟩ protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b := sigma.coind_unc ⟨f, g⟩ a --is the instance below dangerous? --in Coq this can be done without function extensionality definition is_equiv_coind [instance] (C : Πa, B a → Type) : is_equiv (@sigma.coind_unc _ _ C) := adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩) (λ h, proof eq_of_homotopy (λu, !sigma.eta) qed) (λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed)) definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) := equiv.mk sigma.coind_unc _ end /- Subtypes (sigma types whose second components are props) -/ definition subtype [reducible] {A : Type} (P : A → Type) [H : Πa, is_prop (P a)] := Σ(a : A), P a notation [parsing_only] `{` binder `|` r:(scoped:1 P, subtype P) `}` := r /- To prove equality in a subtype, we only need equality of the first component. -/ definition subtype_eq [H : Πa, is_prop (B a)] {u v : {a | B a}} : u.1 = v.1 → u = v := sigma_eq_unc ∘ inv pr1 definition is_equiv_subtype_eq [H : Πa, is_prop (B a)] (u v : {a | B a}) : is_equiv (subtype_eq : u.1 = v.1 → u = v) := !is_equiv_compose local attribute is_equiv_subtype_eq [instance] definition equiv_subtype [H : Πa, is_prop (B a)] (u v : {a | B a}) : (u.1 = v.1) ≃ (u = v) := equiv.mk !subtype_eq _ definition subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_prop (B a)] (u v : Σa, B a) : u = v → u.1 = v.1 := subtype_eq⁻¹ᶠ local attribute subtype_eq_inv [reducible] definition is_equiv_subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_prop (B a)] (u v : Σa, B a) : is_equiv (subtype_eq_inv u v) := _ /- truncatedness -/ theorem is_trunc_sigma (B : A → Type) (n : trunc_index) [HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) := begin revert A B HA HB, induction n with n IH, { intro A B HA HB, fapply is_trunc_equiv_closed_rev, apply sigma_equiv_of_is_contr_left}, { intro A B HA HB, apply is_trunc_succ_intro, intro u v, apply is_trunc_equiv_closed_rev, apply sigma_eq_equiv, exact IH _ _ _ _} end theorem is_trunc_subtype (B : A → Prop) (n : trunc_index) [HA : is_trunc (n.+1) A] : is_trunc (n.+1) (Σa, B a) := @(is_trunc_sigma B (n.+1)) _ (λa, !is_trunc_succ_of_is_prop) end sigma attribute sigma.is_trunc_sigma [instance] [priority 1490] attribute sigma.is_trunc_subtype [instance] [priority 1200]