/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Initial category -/ import .indiscrete open functor is_trunc eq namespace category definition initial_precategory [constructor] : precategory empty := indiscrete_precategory empty definition Initial_precategory [constructor] : Precategory := precategory.Mk initial_precategory notation 0 := Initial_precategory definition zero_op : 0ᵒᵖ = 0 := idp definition initial_functor [constructor] (C : Precategory) : 0 ⇒ C := functor.mk (λx, empty.elim x) (λx y f, empty.elim x) (λx, empty.elim x) (λx y z g f, empty.elim x) definition is_contr_initial_functor [instance] (C : Precategory) : is_contr (0 ⇒ C) := is_contr.mk (initial_functor C) begin intro F, fapply functor_eq, { intro x, exact empty.elim x}, { intro x y f, exact empty.elim x} end definition initial_functor_op (C : Precategory) : (initial_functor C)ᵒᵖᶠ = initial_functor Cᵒᵖ := by apply @is_prop.elim (0 ⇒ Cᵒᵖ) definition initial_functor_comp {C D : Precategory} (F : C ⇒ D) : F ∘f initial_functor C = initial_functor D := by apply @is_prop.elim (0 ⇒ D) end category