/- Copyright (c) 2015 Jacob Gross. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jacob Gross, Jeremy Avigad Extended reals. -/ import data.real open real eq.ops classical -- This is a hack, to get around the fact that the top level names are inaccessible when -- defining these theorems in the ereal namespace. Is there a better way? private definition zero_mul' := @zero_mul private definition mul_zero' := @mul_zero private definition neg_neg' := @neg_neg noncomputable theory inductive ereal : Type := | of_real : ℝ → ereal | infty : ereal | neginfty : ereal attribute ereal.of_real [coercion] notation `∞` := ereal.infty notation `-∞` := ereal.neginfty namespace ereal protected definition prio := num.pred real.prio /- arithmetic operations on the ereals -/ definition ereal_has_zero [instance] [priority ereal.prio] : has_zero ereal := has_zero.mk (of_real 0) definition ereal_has_one [instance] [priority ereal.prio] : has_one ereal := has_one.mk (of_real 1) protected definition add : ereal → ereal → ereal | (of_real x) (of_real y) := of_real (x + y) | ∞ _ := ∞ | _ ∞ := ∞ | -∞ _ := -∞ | _ -∞ := -∞ protected definition neg : ereal → ereal | (of_real x) := of_real (-x) | ∞ := -∞ | -∞ := ∞ private definition blow_up [reducible] : ereal → ereal | (of_real x) := if x = 0 then of_real 0 else if x > 0 then ∞ else -∞ | ∞ := ∞ | -∞ := -∞ protected definition mul : ereal → ereal → ereal | (of_real x) (of_real y) := of_real (x * y) | ∞ a := blow_up a | a ∞ := blow_up a | -∞ a := ereal.neg (blow_up a) | a -∞ := ereal.neg (blow_up a) definition ereal_has_add [instance] [priority ereal.prio] : has_add ereal := has_add.mk ereal.add definition ereal_has_neg [instance] [priority ereal.prio] : has_neg ereal := has_neg.mk ereal.neg protected definition sub (u v : ereal) : ereal := u + -v definition ereal_has_sub [instance] [priority ereal.prio] : has_sub ereal := has_sub.mk ereal.sub definition ereal_has_mul [instance] [priority ereal.prio] : has_mul ereal := has_mul.mk ereal.mul protected theorem zero_def : (0 : ereal) = of_real 0 := rfl protected theorem one_def : (1 : ereal) = of_real 1 := rfl protected theorem add_def (x y : ereal) : x + y = ereal.add x y := rfl protected theorem neg_def (x : ereal) : -x = ereal.neg x := rfl protected theorem sub_eq_add_neg (u v : ereal) : u - v = u + -v := rfl protected theorem mul_def (x y : ereal) : x * y = ereal.mul x y := rfl theorem of_real.inj {x y : real} (H : of_real x = of_real y) : x = y := ereal.no_confusion H (assume H1, H1) abbreviation eq_of_of_real_eq_of_real := @of_real.inj theorem of_real_add (x y : real) : of_real (x + y) = of_real x + of_real y := rfl theorem of_real_mul (x y : real) : of_real (x * y) = of_real x * of_real y := rfl theorem infty_ne_neg_infty : ∞ ≠ -∞ := ereal.no_confusion theorem infty_ne_of_real (x : real) : ∞ ≠ of_real x := ereal.no_confusion theorem neg_infty_ne_of_real (x : real) : -∞ ≠ of_real x := ereal.no_confusion /- properties of the arithmetic operations -/ protected theorem add_comm : ∀ u v : ereal, u + v = v + u | (of_real x) (of_real y) := congr_arg of_real !add.comm | ∞ v := by rewrite[*ereal.add_def, ↑ereal.add] | u ∞ := by rewrite[*ereal.add_def, ↑ereal.add] | -∞ v := by rewrite[*ereal.add_def, ↑ereal.add] | u -∞ := by rewrite[*ereal.add_def, ↑ereal.add] theorem infty_add : ∀ u, ∞ + u = ∞ | (of_real x) := rfl | ∞ := rfl | -∞ := rfl theorem add_infty : ∀ u, u + ∞ = ∞ | (of_real x) := rfl | ∞ := rfl | -∞ := rfl protected theorem add_assoc : ∀ u v w : ereal, (u + v) + w = u + (v + w) | (of_real x) (of_real y) (of_real z) := congr_arg of_real !add.assoc | ∞ v w := by rewrite [*infty_add, *add_infty] | u ∞ w := by rewrite [*infty_add, *add_infty, infty_add] | u v ∞ := by rewrite [*infty_add, *add_infty] | (of_real x) (of_real y) -∞ := by rewrite[*ereal.add_def, ↑ereal.add] | (of_real x) -∞ (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add] | -∞ (of_real y) (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add] | (of_real x) -∞ -∞ := by rewrite[*ereal.add_def, ↑ereal.add] | -∞ (of_real y) -∞ := rfl | -∞ -∞ (of_real z) := by rewrite[*ereal.add_def, ↑ereal.add] | -∞ -∞ -∞ := rfl protected theorem zero_add : ∀ u : ereal, 0 + u = u | (of_real x) := congr_arg of_real !real.zero_add | ∞ := rfl | -∞ := rfl protected theorem add_zero : ∀ u : ereal, u + 0 = u := by intro u; rewrite [ereal.add_comm, ereal.zero_add] protected theorem mul_comm : ∀ u v : ereal, u * v = v * u | (of_real x) (of_real y) := congr_arg of_real !mul.comm | ∞ a := by rewrite [*ereal.mul_def, ↑ereal.mul] | a ∞ := by rewrite [*ereal.mul_def, ↑ereal.mul] | -∞ a := by rewrite [*ereal.mul_def, ↑ereal.mul] | a -∞ := by rewrite [*ereal.mul_def, ↑ereal.mul] protected theorem neg_neg : ∀ u : ereal, -(-u) = u | ∞ := rfl | (of_real x) := by rewrite [*ereal.neg_def, ↑ereal.neg, ▸*, (neg_neg' x)] | -∞ := rfl theorem neg_infty : -∞ = - ∞ := rfl protected theorem neg_zero : -(0 : ereal) = 0 := rfl theorem infty_mul_pos {x : real} (H : x > 0) : ∞ * x = ∞ := have H1 : x ≠ 0, from ne_of_gt H, by rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_pos H] theorem pos_mul_infty {x : real} (H : x > 0) : x * ∞ = ∞ := by rewrite [ereal.mul_comm, infty_mul_pos H] theorem infty_mul_neg {x : real} (H : x < 0) : ∞ * x = -∞ := have H1 : x ≠ 0, from ne_of_lt H, have H2 : ¬ x > 0, from not_lt_of_gt H, by rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_neg H2] theorem neg_mul_infty {x : real} (H : x < 0) : x * ∞ = -∞ := by rewrite [ereal.mul_comm, infty_mul_neg H] private theorem infty_mul_zero : ∞ * 0 = 0 := by rewrite [*ereal.mul_def, ↑ereal.mul, ereal.zero_def, ↑blow_up, if_pos rfl] private theorem zero_mul_infty : 0 * ∞ = 0 := by rewrite [ereal.mul_comm, infty_mul_zero] theorem infty_mul_infty : ∞ * ∞ = ∞ := rfl protected theorem neg_of_real (x : real) : -(of_real x) = of_real (-x) := rfl private theorem aux1 : ∀ v : ereal, -∞ * v = -(∞ * v) | ∞ := rfl | (of_real x) := rfl | -∞ := rfl private theorem aux2 : ∀ u : ereal, -u * ∞ = -(u * ∞) | ∞ := rfl | (of_real x) := lt.by_cases (assume H : x < 0, by rewrite [ereal.neg_of_real, pos_mul_infty (neg_pos_of_neg H), neg_mul_infty H]) (assume H : x = 0, by krewrite [H, ereal.neg_zero, *zero_mul_infty, ereal.neg_zero]) (assume H : x > 0, by rewrite [ereal.neg_of_real, neg_mul_infty (neg_neg_of_pos H), pos_mul_infty H]) | -∞ := rfl theorem ereal_neg_mul : ∀ u v : ereal, -u * v = -(u * v) | ∞ v := aux1 v | -∞ v := by rewrite [aux1, *ereal.neg_neg] | u ∞ := by rewrite [-aux2] | u -∞ := by rewrite [ereal.mul_comm, ereal.mul_comm u, *aux1, ereal.mul_comm, aux2, *ereal.neg_neg] | (of_real x) (of_real y) := congr_arg of_real (eq.symm (neg_mul_eq_neg_mul x y)) theorem ereal_mul_neg (u v : ereal) : u * -v = -(u * v) := by rewrite [*ereal.mul_comm u, ereal_neg_mul] protected theorem mul_zero : ∀ u : ereal, u * 0 = 0 | ∞ := infty_mul_zero | -∞ := by rewrite [neg_infty, ereal_neg_mul, infty_mul_zero] | (of_real x) := congr_arg of_real (mul_zero' x) protected theorem zero_mul (u : ereal) : 0 * u = 0 := by rewrite [ereal.mul_comm, ereal.mul_zero] private theorem aux3 : ∀ u, ∞ * (∞ * u) = ∞ * u | ∞ := rfl | (of_real x) := if H : x = 0 then by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, *H, *if_pos rfl] else if H1 : x > 0 then by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, if_neg H, if_pos H1] else by rewrite [*ereal.mul_def, ↑ereal.mul, ↑blow_up, if_neg H, if_neg H1] | -∞ := rfl private theorem aux4 (x y : real) : ∞ * x * y = ∞ * (x * y) := lt.by_cases (assume H : x < 0, lt.by_cases (assume H1 : y < 0, by rewrite [infty_mul_neg H, neg_infty, ereal_neg_mul, -of_real_mul, infty_mul_neg H1, infty_mul_pos (mul_pos_of_neg_of_neg H H1)]) (assume H1 : y = 0, by krewrite [H1, *ereal.mul_zero]) (assume H1 : y > 0, by rewrite [infty_mul_neg H, neg_infty, *ereal_neg_mul, -of_real_mul, infty_mul_pos H1, infty_mul_neg (mul_neg_of_neg_of_pos H H1)])) (assume H : x = 0, by krewrite [H, ereal.mul_zero, *ereal.zero_mul, ereal.mul_zero]) (assume H : x > 0, lt.by_cases (assume H1 : y < 0, by rewrite [infty_mul_pos H, infty_mul_neg H1, -of_real_mul, infty_mul_neg (mul_neg_of_pos_of_neg H H1)]) (assume H1 : y = 0, by krewrite [H1, *ereal.mul_zero]) (assume H1 : y > 0, by rewrite [infty_mul_pos H, infty_mul_pos H1, -of_real_mul, infty_mul_pos (mul_pos H H1)])) private theorem aux5 : ∀ u v, ∞ * u * v = ∞ * (u * v) | ∞ v := by rewrite [infty_mul_infty, aux3] | u ∞ := by rewrite [-*ereal.mul_comm ∞] | -∞ v := by rewrite [neg_infty, *ereal_neg_mul, *ereal_mul_neg, ereal_neg_mul, infty_mul_infty, aux3] | u -∞ := by rewrite [neg_infty, *ereal_mul_neg] | (of_real x) (of_real y) := aux4 x y protected theorem mul_assoc : ∀ u v w : ereal, u * v * w = u * (v * w) | ∞ v w := !aux5 | u ∞ w := by rewrite [-*ereal.mul_comm ∞, *ereal.mul_comm u, *aux5, *ereal.mul_comm u] | u v ∞ := by rewrite [-*ereal.mul_comm ∞, *ereal.mul_comm u, aux5] | -∞ v w := by rewrite [neg_infty, *ereal_neg_mul, aux5] | u -∞ w := by rewrite [neg_infty, *ereal_mul_neg, *ereal_neg_mul, ereal_mul_neg, *ereal.mul_comm u, *aux5, ereal.mul_comm u] | u v -∞ := by rewrite [neg_infty, *ereal_mul_neg, *ereal.mul_comm u, -*ereal.mul_comm ∞, aux5] | (of_real x) (of_real y) (of_real z) := congr_arg of_real (mul.assoc x y z) protected theorem one_mul : ∀ u : ereal, of_real 1 * u = u | (of_real x) := !real.one_mul ▸ rfl | ∞ := pos_mul_infty zero_lt_one | -∞ := by rewrite [neg_infty, ereal_mul_neg, pos_mul_infty zero_lt_one] protected theorem mul_one (u : ereal) : u * 1 = u := by krewrite [ereal.mul_comm, ereal.one_mul] /- instantiating arithmetic structures -/ -- Note that distributivity fails, e.g. ∞ ⬝ (-1 + 1) ≠ ∞ * -1 + ∞ * 1 protected definition comm_monoid [trans_instance] : comm_monoid ereal := ⦃comm_monoid, mul := ereal.mul, mul_assoc := ereal.mul_assoc, one := 1, one_mul := ereal.one_mul, mul_one := ereal.mul_one, mul_comm := ereal.mul_comm ⦄ protected definition add_comm_monoid [trans_instance] : add_comm_monoid ereal := ⦃add_comm_monoid, add := ereal.add, add_assoc := ereal.add_assoc, zero := 0, zero_add := ereal.zero_add, add_zero := ereal.add_zero, add_comm := ereal.add_comm ⦄ /- ordering on the ereals -/ protected definition le : ereal → ereal → Prop | u ∞ := true | -∞ v := true | (of_real x) (of_real y) := x ≤ y | (of_real x) -∞ := false | ∞ (of_real y) := false | ∞ -∞ := false definition ereal_has_le [instance] [priority ereal.prio] : has_le ereal := has_le.mk ereal.le theorem of_real_le_of_real (x y : real) : of_real x ≤ of_real y ↔ x ≤ y := !iff.refl theorem le_infty : ∀ u, u ≤ ∞ | ∞ := trivial | (of_real x) := trivial | -∞ := trivial theorem neg_infty_le : ∀ v, -∞ ≤ v | ∞ := trivial | (of_real x) := trivial | -∞ := trivial protected theorem le_refl : ∀ u : ereal, u ≤ u | ∞ := trivial | -∞ := trivial | (of_real x) := by rewrite [of_real_le_of_real]; apply le.refl protected theorem le_trans : ∀ u v w : ereal, u ≤ v → v ≤ w → u ≤ w | u v ∞ H1 H2 := !le_infty | -∞ v w H1 H2 := !neg_infty_le | u ∞ (of_real x) H1 H2 := false.elim H2 | ∞ (of_real x) v H1 H2 := false.elim H1 | ∞ -∞ v H1 H2 := false.elim H1 | u (of_real x) -∞ H1 H2 := false.elim H2 | u ∞ -∞ H1 H2 := false.elim H2 | (of_real x) -∞ v H1 H2 := false.elim H1 | (of_real x) (of_real y) (of_real z) H1 H2 := iff.mpr !of_real_le_of_real (le.trans (iff.mp !of_real_le_of_real H1) (iff.mp !of_real_le_of_real H2)) protected theorem le_antisymm : ∀ u v : ereal, u ≤ v → v ≤ u → u = v | ∞ ∞ H1 H2 := rfl | ∞ (of_real x) H1 H2 := false.elim H1 | ∞ -∞ H1 H2 := false.elim H1 | -∞ -∞ H1 H2 := rfl | -∞ (of_real x) H1 H2 := false.elim H2 | -∞ ∞ H1 H2 := false.elim H2 | (of_real x) ∞ H1 H2 := false.elim H2 | (of_real x) -∞ H1 H2 := false.elim H1 | (of_real x) (of_real y) H1 H2 := congr_arg of_real (le.antisymm (iff.mp !of_real_le_of_real H1) (iff.mp !of_real_le_of_real H2)) protected definition lt (x y : ereal) : Prop := x ≤ y ∧ x ≠ y definition ereal_has_lt [instance] [priority ereal.prio] : has_lt ereal := has_lt.mk ereal.lt protected theorem le_iff_lt_or_eq (u v : ereal) : u ≤ v ↔ u < v ∨ u = v := iff.intro (assume H : u ≤ v, by_cases (assume H1 : u = v, or.inr H1) (assume H1 : u ≠ v, or.inl (and.intro H H1))) (assume H : u < v ∨ u = v, or.elim H (assume H1 : u < v, and.left H1) (assume H1 : u = v, by rewrite H1; apply ereal.le_refl)) protected theorem le_total : ∀ u v : ereal, u ≤ v ∨ v ≤ u | u ∞ := or.inl (le_infty u) | u -∞ := or.inr (neg_infty_le u) | ∞ v := or.inr (le_infty v) | -∞ v := or.inl (neg_infty_le v) | (of_real x) (of_real y) := or.elim (le.total x y) (assume H : x ≤[real] y, or.inl (iff.mpr !of_real_le_of_real H)) (assume H : x ≥[real] y, or.inr (iff.mpr !of_real_le_of_real H)) theorem neg_infty_lt_infty : -∞ < ∞ := and.intro trivial (ne.symm infty_ne_neg_infty) theorem neg_infty_lt_of_real (x : real) : -∞ < of_real x := and.intro trivial !neg_infty_ne_of_real theorem of_real_lt_infty (x : real) : of_real x < ∞ := and.intro trivial (ne.symm !infty_ne_of_real) protected definition decidable_linear_order [trans_instance] : decidable_linear_order ereal := ⦃decidable_linear_order, le := ereal.le, le_refl := ereal.le_refl, le_trans := ereal.le_trans, le_antisymm := ereal.le_antisymm, lt := ereal.lt, le_iff_lt_or_eq := ereal.le_iff_lt_or_eq, lt_irrefl := abstract λ u H, and.right H rfl end, decidable_lt := abstract λ u v : ereal, prop_decidable (u < v) end, le_total := ereal.le_total ⦄ -- TODO : we still need some properties relating the arithmetic operations and the order. end ereal