import types.eq types.pi hit.colimit open eq is_trunc unit quotient seq_colim equiv axiom mysorry : ∀ {A : Type}, A namespace one_step_tr section parameters {A : Type} variables (a a' : A) protected definition R (a a' : A) : Type₀ := unit parameter (A) definition one_step_tr : Type := quotient R parameter {A} definition tr : one_step_tr := class_of R a definition tr_eq : tr a = tr a' := eq_of_rel _ star protected definition rec {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a)) (Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (x : one_step_tr) : P x := begin fapply (quotient.rec_on x), { intro a, apply Pt}, { intro a a' H, cases H, apply Pe} end protected definition elim {P : Type} (Pt : A → P) (Pe : Π(a a' : A), Pt a = Pt a') (x : one_step_tr) : P := rec Pt (λa a', pathover_of_eq _ (Pe a a')) x theorem rec_tr_eq {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a)) (Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (a a' : A) : apd (rec Pt Pe) (tr_eq a a') = Pe a a' := !rec_eq_of_rel theorem elim_tr_eq {P : Type} (Pt : A → P) (Pe : Π(a a' : A), Pt a = Pt a') (a a' : A) : ap (elim Pt Pe) (tr_eq a a') = Pe a a' := begin apply inj_inv !(pathover_constant (tr_eq a a')), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_tr_eq], end end end one_step_tr attribute one_step_tr.rec one_step_tr.elim [recursor 5] open one_step_tr definition one_step_tr_up (A B : Type) : (one_step_tr A → B) ≃ Σ(f : A → B), Π(x y : A), f x = f y := begin fapply equiv.MK, { intro f, fconstructor, intro a, exact f (tr a), intros, exact ap f !tr_eq}, { exact mysorry}, { exact mysorry}, { exact mysorry}, end