/* Copyright (c) 2013-2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include #include #include #include #include #include "util/thread.h" #include "util/lua.h" #include "util/rc.h" #include "util/name.h" #include "util/hash.h" #include "util/buffer.h" #include "util/list_fn.h" #include "util/optional.h" #include "util/serializer.h" #include "util/sexpr/format.h" #include "kernel/level.h" #include "kernel/extension_context.h" namespace lean { // Tags are used by frontends to mark expressions. They are automatically propagated by // procedures such as update_app, update_binder, etc. typedef unsigned tag; constexpr tag nulltag = std::numeric_limits::max(); class expr; /* ======================================= Expressions expr ::= Var idx | Sort level | Constant name [levels] | Meta name expr | Local name expr | App expr expr | Lambda name expr expr | Pi name expr expr | Let name expr expr expr | Macro macro */ enum class expr_kind { Var, Sort, Constant, Meta, Local, App, Lambda, Pi, Let, Macro }; class expr_cell { protected: // The bits of the following field mean: // 0-1 - term is an arrow (0 - not initialized, 1 - is arrow, 2 - is not arrow) // Remark: we use atomic_uchar because these flags are computed lazily (i.e., after the expression is created) atomic_uchar m_flags; unsigned m_kind:8; unsigned m_has_mv:1; // term contains metavariables unsigned m_has_local:1; // term contains local constants unsigned m_has_param_univ:1; // term constains parametric universe levels unsigned m_hash; // hash based on the structure of the expression (this is a good hash for structural equality) unsigned m_hash_alloc; // hash based on 'time' of allocation (this is a good hash for pointer-based equality) atomic_uint m_tag; MK_LEAN_RC(); // Declare m_rc counter void dealloc(); optional is_arrow() const; void set_is_arrow(bool flag); friend bool is_arrow(expr const & e); static void dec_ref(expr & c, buffer & todelete); public: expr_cell(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ); expr_kind kind() const { return static_cast(m_kind); } unsigned hash() const { return m_hash; } unsigned hash_alloc() const { return m_hash_alloc; } bool has_metavar() const { return m_has_mv; } bool has_local() const { return m_has_local; } bool has_param_univ() const { return m_has_param_univ; } void set_tag(tag t); tag get_tag() const { return m_tag; } }; class macro_definition; class binder_info; /** \brief Exprs for encoding formulas/expressions, types and proofs. */ class expr { private: expr_cell * m_ptr; explicit expr(expr_cell * ptr):m_ptr(ptr) { if (m_ptr) m_ptr->inc_ref(); } friend class expr_cell; expr_cell * steal_ptr() { expr_cell * r = m_ptr; m_ptr = nullptr; return r; } friend class optional; public: /** \brief The default constructor creates a reference to a "dummy" expression. The actual "dummy" expression is not relevant, and no procedure should rely on the kind of expression used. We have a default constructor because some collections only work with types that have a default constructor. */ expr(); expr(expr const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); } expr(expr && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; } ~expr() { if (m_ptr) m_ptr->dec_ref(); } friend void swap(expr & a, expr & b) { std::swap(a.m_ptr, b.m_ptr); } expr & operator=(expr const & s) { LEAN_COPY_REF(s); } expr & operator=(expr && s) { LEAN_MOVE_REF(s); } expr_kind kind() const { return m_ptr->kind(); } unsigned hash() const { return m_ptr ? m_ptr->hash() : 23; } unsigned hash_alloc() const { return m_ptr ? m_ptr->hash_alloc() : 23; } bool has_metavar() const { return m_ptr->has_metavar(); } bool has_local() const { return m_ptr->has_local(); } bool has_param_univ() const { return m_ptr->has_param_univ(); } void set_tag(tag t) { m_ptr->set_tag(t); } tag get_tag() const { return m_ptr->get_tag(); } expr_cell * raw() const { return m_ptr; } friend expr mk_var(unsigned idx); friend expr mk_sort(level const & l); friend expr mk_constant(name const & n, levels const & ls); friend expr mk_metavar(name const & n, expr const & t); friend expr mk_local(name const & n, name const & pp_n, expr const & t); friend expr mk_app(expr const & f, expr const & a); friend expr mk_pair(expr const & f, expr const & s, expr const & t); friend expr mk_proj(bool fst, expr const & p); friend expr mk_binding(expr_kind k, name const & n, expr const & t, expr const & e, binder_info const & i); friend expr mk_let(name const & n, expr const & t, expr const & v, expr const & e); friend expr mk_macro(macro_definition const & m, unsigned num, expr const * args); friend bool is_eqp(expr const & a, expr const & b) { return a.m_ptr == b.m_ptr; } // Overloaded operator() can be used to create applications expr operator()(expr const & a1) const; expr operator()(expr const & a1, expr const & a2) const; expr operator()(expr const & a1, expr const & a2, expr const & a3) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7, expr const & a8) const; }; // ======================================= // Structural equality /** \brief Binder information is ignored in the following predicate */ bool operator==(expr const & a, expr const & b); inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); } /** \brief Similar to ==, but it also compares binder information */ bool is_bi_equal(expr const & a, expr const & b); // ======================================= SPECIALIZE_OPTIONAL_FOR_SMART_PTR(expr) inline optional none_expr() { return optional(); } inline optional some_expr(expr const & e) { return optional(e); } inline optional some_expr(expr && e) { return optional(std::forward(e)); } inline bool is_eqp(optional const & a, optional const & b) { return static_cast(a) == static_cast(b) && (!a || is_eqp(*a, *b)); } /** \brief Bounded variables. They are encoded using de Bruijn's indices. */ class expr_var : public expr_cell { unsigned m_vidx; // de Bruijn index public: expr_var(unsigned idx); unsigned get_vidx() const { return m_vidx; } }; /** \brief (parametric) Constants. */ class expr_const : public expr_cell { name m_name; levels m_levels; public: expr_const(name const & n, levels const & ls); name const & get_name() const { return m_name; } levels const & get_levels() const { return m_levels; } }; /** \brief Metavariables and local constants */ class expr_mlocal : public expr_cell { protected: name m_name; expr m_type; friend expr_cell; void dealloc(buffer & todelete); public: expr_mlocal(bool is_meta, name const & n, expr const & t); name const & get_name() const { return m_name; } expr const & get_type() const { return m_type; } }; /** \brief expr_mlocal subclass for local constants. */ class expr_local : public expr_mlocal { // The name used in the binder that generate this local, // it is only used for pretty printing. This field is ignored // when comparing expressions. name m_pp_name; friend expr_cell; void dealloc(buffer & todelete); public: expr_local(name const & n, name const & pp_name, expr const & t); name const & get_pp_name() const { return m_pp_name; } }; /** \brief Composite expressions */ class expr_composite : public expr_cell { unsigned m_depth; unsigned m_free_var_range; friend unsigned get_depth(expr const & e); friend unsigned get_free_var_range(expr const & e); public: expr_composite(expr_kind k, unsigned h, bool has_mv, bool has_local, bool has_param_univ, unsigned d, unsigned fv_range); }; /** \brief Applications */ class expr_app : public expr_composite { expr m_fn; expr m_arg; friend expr_cell; void dealloc(buffer & todelete); public: expr_app(expr const & fn, expr const & arg); expr const & get_fn() const { return m_fn; } expr const & get_arg() const { return m_arg; } }; /** \brief Auxiliary annotation for binders (Lambda and Pi). This information is only used for elaboration. */ class binder_info { unsigned m_implicit:1; //! if true, binder argument is an implicit argument unsigned m_cast:1; //! if true, binder argument is a target for using cast unsigned m_contextual:1; //! if true, binder argument is assumed to be part of the context, and may be argument for metavariables. public: binder_info(bool implicit = false, bool cast = false, bool contextual = true): m_implicit(implicit), m_cast(cast), m_contextual(contextual) {} bool is_implicit() const { return m_implicit; } bool is_cast() const { return m_cast; } bool is_contextual() const { return m_contextual; } }; bool operator==(binder_info const & i1, binder_info const & i2); inline bool operator!=(binder_info const & i1, binder_info const & i2) { return !(i1 == i2); } class binder { friend class expr_binding; name m_name; expr m_type; binder_info m_info; public: binder(name const & n, expr const & t, binder_info const & bi = binder_info()): m_name(n), m_type(t), m_info(bi) {} name const & get_name() const { return m_name; } expr const & get_type() const { return m_type; } binder_info const & get_info() const { return m_info; } binder update_type(expr const & t) const { return binder(m_name, t, m_info); } }; /** \brief Lambda and Pi expressions */ class expr_binding : public expr_composite { binder m_binder; expr m_body; friend class expr_cell; void dealloc(buffer & todelete); public: expr_binding(expr_kind k, name const & n, expr const & t, expr const & e, binder_info const & i = binder_info()); name const & get_name() const { return m_binder.get_name(); } expr const & get_domain() const { return m_binder.get_type(); } expr const & get_body() const { return m_body; } binder_info const & get_info() const { return m_binder.get_info(); } binder const & get_binder() const { return m_binder; } }; /** \brief Let expressions */ class expr_let : public expr_composite { name m_name; expr m_type; expr m_value; expr m_body; friend class expr_cell; void dealloc(buffer & todelete); public: expr_let(name const & n, expr const & t, expr const & v, expr const & b); ~expr_let(); name const & get_name() const { return m_name; } expr const & get_type() const { return m_type; } expr const & get_value() const { return m_value; } expr const & get_body() const { return m_body; } }; /** \brief Sort */ class expr_sort : public expr_cell { level m_level; public: expr_sort(level const & l); ~expr_sort(); level const & get_level() const { return m_level; } }; class formatter; /** \brief Abstract class for macro_definitions */ class macro_definition_cell { protected: void dealloc() { delete this; } MK_LEAN_RC(); /** \brief Auxiliary method used for implementing a total order on macro attachments. It is invoked by operator<, and it is only invoked when get_name() == other.get_name() */ virtual bool lt(macro_definition_cell const &) const; public: macro_definition_cell():m_rc(0) {} virtual ~macro_definition_cell() {} virtual name get_name() const = 0; virtual expr get_type(expr const & m, expr const * arg_types, extension_context & ctx) const = 0; virtual optional expand(expr const & m, extension_context & ctx) const = 0; virtual optional expand1(expr const & m, extension_context & ctx) const { return expand(m, ctx); } virtual unsigned trust_level() const; virtual bool operator==(macro_definition_cell const & other) const; virtual void display(std::ostream & out) const; virtual format pp(formatter const & fmt, options const & opts) const; virtual bool is_atomic_pp(bool unicode, bool coercion) const; virtual unsigned hash() const; virtual void write(serializer & s) const = 0; typedef std::function reader; }; /** \brief Smart pointer for macro definitions */ class macro_definition { public: macro_definition_cell * m_ptr; public: explicit macro_definition(macro_definition_cell * ptr); macro_definition(macro_definition const & s); macro_definition(macro_definition && s); ~macro_definition(); macro_definition & operator=(macro_definition const & s); macro_definition & operator=(macro_definition && s); name get_name() const { return m_ptr->get_name(); } expr get_type(expr const & m, expr const * arg_types, extension_context & ctx) const { return m_ptr->get_type(m, arg_types, ctx); } optional expand(expr const & m, extension_context & ctx) const { return m_ptr->expand(m, ctx); } optional expand1(expr const & m, extension_context & ctx) const { return m_ptr->expand1(m, ctx); } unsigned trust_level() const { return m_ptr->trust_level(); } bool operator==(macro_definition const & other) const { return m_ptr->operator==(*other.m_ptr); } bool operator!=(macro_definition const & other) const { return !operator==(other); } bool operator<(macro_definition const & other) const; void display(std::ostream & out) const { return m_ptr->display(out); } format pp(formatter const & fmt, options const & opts) const { return m_ptr->pp(fmt, opts); } bool is_atomic_pp(bool unicode, bool coercion) const { return m_ptr->is_atomic_pp(unicode, coercion); } unsigned hash() const { return m_ptr->hash(); } void write(serializer & s) const { return m_ptr->write(s); } }; /** \brief Macro attachments */ class expr_macro : public expr_composite { macro_definition m_definition; unsigned m_num_args; expr * m_args; friend class expr_cell; friend expr copy(expr const & a); friend expr update_macro(expr const & e, unsigned num, expr const * args); void dealloc(buffer & todelete); public: expr_macro(macro_definition const & v, unsigned num, expr const * args); ~expr_macro(); macro_definition const & get_def() const { return m_definition; } expr const * get_args() const { return m_args; } expr const & get_arg(unsigned idx) const { lean_assert(idx < m_num_args); return m_args[idx]; } unsigned get_num_args() const { return m_num_args; } }; // ======================================= // Testers inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var; } inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; } inline bool is_local(expr_cell * e) { return e->kind() == expr_kind::Local; } inline bool is_metavar(expr_cell * e) { return e->kind() == expr_kind::Meta; } inline bool is_macro(expr_cell * e) { return e->kind() == expr_kind::Macro; } inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; } inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; } inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; } inline bool is_sort(expr_cell * e) { return e->kind() == expr_kind::Sort; } inline bool is_let(expr_cell * e) { return e->kind() == expr_kind::Let; } inline bool is_binding(expr_cell * e) { return is_lambda(e) || is_pi(e); } inline bool is_mlocal(expr_cell * e) { return is_metavar(e) || is_local(e); } inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var; } inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; } inline bool is_local(expr const & e) { return e.kind() == expr_kind::Local; } inline bool is_metavar(expr const & e) { return e.kind() == expr_kind::Meta; } inline bool is_macro(expr const & e) { return e.kind() == expr_kind::Macro; } inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; } inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; } inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; } inline bool is_sort(expr const & e) { return e.kind() == expr_kind::Sort; } inline bool is_let(expr const & e) { return e.kind() == expr_kind::Let; } inline bool is_binding(expr const & e) { return is_lambda(e) || is_pi(e); } inline bool is_mlocal(expr const & e) { return is_metavar(e) || is_local(e); } bool is_atomic(expr const & e); bool is_arrow(expr const & t); /** \brief Return true iff \c e is a metavariable or an application of a metavariable */ bool is_meta(expr const & e); // ======================================= // ======================================= // Constructors inline expr mk_var(unsigned idx) { return expr(new expr_var(idx)); } inline expr Var(unsigned idx) { return mk_var(idx); } inline expr mk_constant(name const & n, levels const & ls) { return expr(new expr_const(n, ls)); } inline expr mk_constant(name const & n) { return mk_constant(n, levels()); } inline expr Const(name const & n) { return mk_constant(n); } inline expr mk_macro(macro_definition const & m, unsigned num = 0, expr const * args = nullptr) { return expr(new expr_macro(m, num, args)); } inline expr mk_metavar(name const & n, expr const & t) { return expr(new expr_mlocal(true, n, t)); } inline expr mk_local(name const & n, name const & pp_n, expr const & t) { return expr(new expr_local(n, pp_n, t)); } inline expr mk_app(expr const & f, expr const & a) { return expr(new expr_app(f, a)); } expr mk_app(expr const & f, unsigned num_args, expr const * args); expr mk_app(unsigned num_args, expr const * args); inline expr mk_app(std::initializer_list const & l) { return mk_app(l.size(), l.begin()); } template expr mk_app(T const & args) { return mk_app(args.size(), args.data()); } template expr mk_app(expr const & f, T const & args) { return mk_app(f, args.size(), args.data()); } expr mk_rev_app(expr const & f, unsigned num_args, expr const * args); expr mk_rev_app(unsigned num_args, expr const * args); template expr mk_rev_app(T const & args) { return mk_rev_app(args.size(), args.data()); } template expr mk_rev_app(expr const & f, T const & args) { return mk_rev_app(f, args.size(), args.data()); } inline expr mk_binding(expr_kind k, name const & n, expr const & t, expr const & e, binder_info const & i = binder_info()) { return expr(new expr_binding(k, n, t, e, i)); } inline expr mk_lambda(name const & n, expr const & t, expr const & e, binder_info const & i = binder_info()) { return mk_binding(expr_kind::Lambda, n, t, e, i); } inline expr mk_pi(name const & n, expr const & t, expr const & e, binder_info const & i = binder_info()) { return mk_binding(expr_kind::Pi, n, t, e, i); } inline expr mk_let(name const & n, expr const & t, expr const & v, expr const & e) { return expr(new expr_let(n, t, v, e)); } inline expr mk_sort(level const & l) { return expr(new expr_sort(l)); } /** \brief Return Pi(x.{sz-1}, domain[sz-1], ..., Pi(x.{0}, domain[0], range)...) */ expr mk_pi(unsigned sz, expr const * domain, expr const & range); inline expr mk_pi(buffer const & domain, expr const & range) { return mk_pi(domain.size(), domain.data(), range); } expr mk_Bool(); expr mk_Type(); extern expr Type; extern expr Bool; bool is_default_var_name(name const & n); expr mk_arrow(expr const & t, expr const & e); inline expr operator>>(expr const & t, expr const & e) { return mk_arrow(t, e); } // Auxiliary inline expr mk_app(expr const & e1, expr const & e2, expr const & e3) { return mk_app({e1, e2, e3}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({e1, e2, e3, e4}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({e1, e2, e3, e4, e5}); } inline expr expr::operator()(expr const & a1) const { return mk_app({*this, a1}); } inline expr expr::operator()(expr const & a1, expr const & a2) const { return mk_app({*this, a1, a2}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3) const { return mk_app({*this, a1, a2, a3}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const { return mk_app({*this, a1, a2, a3, a4}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const { return mk_app({*this, a1, a2, a3, a4, a5}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const { return mk_app({*this, a1, a2, a3, a4, a5, a6}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const { return mk_app({*this, a1, a2, a3, a4, a5, a6, a7}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7, expr const & a8) const { return mk_app({*this, a1, a2, a3, a4, a5, a6, a7, a8}); } /** \brief Return application (...((f x_{n-1}) x_{n-2}) ... x_0) */ expr mk_app_vars(expr const & f, unsigned n); // ======================================= // ======================================= // Casting (these functions are only needed for low-level code) inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast(e); } inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast(e); } inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast(e); } inline expr_binding * to_binding(expr_cell * e) { lean_assert(is_binding(e)); return static_cast(e); } inline expr_let * to_let(expr_cell * e) { lean_assert(is_let(e)); return static_cast(e); } inline expr_sort * to_sort(expr_cell * e) { lean_assert(is_sort(e)); return static_cast(e); } inline expr_mlocal * to_mlocal(expr_cell * e) { lean_assert(is_mlocal(e)); return static_cast(e); } inline expr_local * to_local(expr_cell * e) { lean_assert(is_local(e)); return static_cast(e); } inline expr_mlocal * to_metavar(expr_cell * e) { lean_assert(is_metavar(e)); return static_cast(e); } inline expr_macro * to_macro(expr_cell * e) { lean_assert(is_macro(e)); return static_cast(e); } inline expr_var * to_var(expr const & e) { return to_var(e.raw()); } inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); } inline expr_app * to_app(expr const & e) { return to_app(e.raw()); } inline expr_binding * to_binding(expr const & e) { return to_binding(e.raw()); } inline expr_let * to_let(expr const & e) { return to_let(e.raw()); } inline expr_sort * to_sort(expr const & e) { return to_sort(e.raw()); } inline expr_mlocal * to_mlocal(expr const & e) { return to_mlocal(e.raw()); } inline expr_mlocal * to_metavar(expr const & e) { return to_metavar(e.raw()); } inline expr_local * to_local(expr const & e) { return to_local(e.raw()); } inline expr_macro * to_macro(expr const & e) { return to_macro(e.raw()); } // ======================================= // ======================================= // Accessors inline unsigned get_rc(expr_cell * e) { return e->get_rc(); } inline bool is_shared(expr_cell * e) { return get_rc(e) > 1; } inline unsigned var_idx(expr_cell * e) { return to_var(e)->get_vidx(); } inline bool is_var(expr_cell * e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr_cell * e) { return to_constant(e)->get_name(); } inline levels const & const_levels(expr_cell * e) { return to_constant(e)->get_levels(); } inline macro_definition const & macro_def(expr_cell * e) { return to_macro(e)->get_def(); } inline expr const * macro_args(expr_cell * e) { return to_macro(e)->get_args(); } inline expr const & macro_arg(expr_cell * e, unsigned i) { return to_macro(e)->get_arg(i); } inline unsigned macro_num_args(expr_cell * e) { return to_macro(e)->get_num_args(); } inline expr const & app_fn(expr_cell * e) { return to_app(e)->get_fn(); } inline expr const & app_arg(expr_cell * e) { return to_app(e)->get_arg(); } inline name const & binding_name(expr_cell * e) { return to_binding(e)->get_name(); } inline expr const & binding_domain(expr_cell * e) { return to_binding(e)->get_domain(); } inline expr const & binding_body(expr_cell * e) { return to_binding(e)->get_body(); } inline binder_info const & binding_info(expr_cell * e) { return to_binding(e)->get_info(); } inline binder const & binding_binder(expr_cell * e) { return to_binding(e)->get_binder(); } inline level const & sort_level(expr_cell * e) { return to_sort(e)->get_level(); } inline name const & let_name(expr_cell * e) { return to_let(e)->get_name(); } inline expr const & let_value(expr_cell * e) { return to_let(e)->get_value(); } inline expr const & let_type(expr_cell * e) { return to_let(e)->get_type(); } inline expr const & let_body(expr_cell * e) { return to_let(e)->get_body(); } inline name const & mlocal_name(expr_cell * e) { return to_mlocal(e)->get_name(); } inline expr const & mlocal_type(expr_cell * e) { return to_mlocal(e)->get_type(); } inline unsigned get_rc(expr const & e) { return e.raw()->get_rc(); } inline bool is_shared(expr const & e) { return get_rc(e) > 1; } inline unsigned var_idx(expr const & e) { return to_var(e)->get_vidx(); } inline bool is_var(expr const & e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr const & e) { return to_constant(e)->get_name(); } inline levels const & const_levels(expr const & e) { return to_constant(e)->get_levels(); } inline macro_definition const & macro_def(expr const & e) { return to_macro(e)->get_def(); } inline expr const * macro_args(expr const & e) { return to_macro(e)->get_args(); } inline expr const & macro_arg(expr const & e, unsigned i) { return to_macro(e)->get_arg(i); } inline unsigned macro_num_args(expr const & e) { return to_macro(e)->get_num_args(); } inline expr const & app_fn(expr const & e) { return to_app(e)->get_fn(); } inline expr const & app_arg(expr const & e) { return to_app(e)->get_arg(); } inline name const & binding_name(expr const & e) { return to_binding(e)->get_name(); } inline expr const & binding_domain(expr const & e) { return to_binding(e)->get_domain(); } inline expr const & binding_body(expr const & e) { return to_binding(e)->get_body(); } inline binder_info const & binding_info(expr const & e) { return to_binding(e)->get_info(); } inline binder const & binding_binder(expr const & e) { return to_binding(e)->get_binder(); } inline level const & sort_level(expr const & e) { return to_sort(e)->get_level(); } inline name const & let_name(expr const & e) { return to_let(e)->get_name(); } inline expr const & let_value(expr const & e) { return to_let(e)->get_value(); } inline expr const & let_type(expr const & e) { return to_let(e)->get_type(); } inline expr const & let_body(expr const & e) { return to_let(e)->get_body(); } inline name const & mlocal_name(expr const & e) { return to_mlocal(e)->get_name(); } inline expr const & mlocal_type(expr const & e) { return to_mlocal(e)->get_type(); } inline name const & local_pp_name(expr const & e) { return to_local(e)->get_pp_name(); } inline bool is_constant(expr const & e, name const & n) { return is_constant(e) && const_name(e) == n; } inline bool has_metavar(expr const & e) { return e.has_metavar(); } inline bool has_local(expr const & e) { return e.has_local(); } inline bool has_param_univ(expr const & e) { return e.has_param_univ(); } unsigned get_depth(expr const & e); /** \brief Return \c R s.t. the de Bruijn index of all free variables occurring in \c e is in the interval [0, R). */ unsigned get_free_var_range(expr const & e); /** \brief Return true iff the given expression has free variables. */ inline bool has_free_vars(expr const & e) { return get_free_var_range(e) > 0; } /** \brief Return true iff the given expression does not have free variables. */ inline bool closed(expr const & e) { return !has_free_vars(e); } /** \brief Return true iff \c e contains a free variable >= low. */ inline bool has_free_var_ge(expr const & e, unsigned low) { return get_free_var_range(e) > low; } /** \brief Given \c e of the form (...(f a1) ... an), store a1 ... an in args. If \c e is not an application, then nothing is stored in args. It returns the f. */ expr const & get_app_args(expr const & e, buffer & args); /** \brief Similar to \c get_app_args, but arguments are stored in reverse order in \c args. If e is of the form (...(f a1) ... an), then the procedure stores [an, ..., a1] in \c args. */ expr const & get_app_rev_args(expr const & e, buffer & args); /** \brief Given of the form (...(f a1) ... an), return \c f. If \c e is not an application, then return \c e. */ expr const & get_app_fn(expr const & e); // ======================================= // ======================================= // Expression+Offset typedef std::pair expr_offset; typedef std::pair expr_cell_offset; // ======================================= // ======================================= // Auxiliary functionals /** \brief Functional object for hashing kernel expressions. */ struct expr_hash { unsigned operator()(expr const & e) const { return e.hash(); } }; /** \brief Functional object for hashing (based on allocation time) kernel expressions. This hash is compatible with pointer equality. \warning This hash is incompatible with structural equality (i.e., std::equal_to) */ struct expr_hash_alloc { unsigned operator()(expr const & e) const { return e.hash_alloc(); } }; /** \brief Functional object for testing pointer equality between kernel expressions. */ struct expr_eqp { bool operator()(expr const & e1, expr const & e2) const { return is_eqp(e1, e2); } }; /** \brief Functional object for hashing kernel expression cells. */ struct expr_cell_hash { unsigned operator()(expr_cell * e) const { return e->hash_alloc(); } }; /** \brief Functional object for testing pointer equality between kernel cell expressions. */ struct expr_cell_eqp { bool operator()(expr_cell * e1, expr_cell * e2) const { return e1 == e2; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel expressions, and k is an offset. */ struct expr_offset_hash { unsigned operator()(expr_offset const & p) const { return hash(p.first.hash_alloc(), p.second); } }; /** \brief Functional object for comparing pairs (expression, offset). */ struct expr_offset_eqp { unsigned operator()(expr_offset const & p1, expr_offset const & p2) const { return is_eqp(p1.first, p2.first) && p1.second == p2.second; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel cell expressions, and k is an offset. */ struct expr_cell_offset_hash { unsigned operator()(expr_cell_offset const & p) const { return hash(p.first->hash_alloc(), p.second); } }; /** \brief Functional object for comparing pairs (expression cell, offset). */ struct expr_cell_offset_eqp { unsigned operator()(expr_cell_offset const & p1, expr_cell_offset const & p2) const { return p1 == p2; } }; // ======================================= // ======================================= // Update expr update_app(expr const & e, expr const & new_fn, expr const & new_arg); expr update_rev_app(expr const & e, unsigned num, expr const * new_args); template expr update_rev_app(expr const & e, C const & c) { return update_rev_app(e, c.size(), c.data()); } expr update_binding(expr const & e, expr const & new_domain, expr const & new_body); expr update_let(expr const & e, expr const & new_type, expr const & new_val, expr const & new_body); expr update_mlocal(expr const & e, expr const & new_type); expr update_sort(expr const & e, level const & new_level); expr update_constant(expr const & e, levels const & new_levels); expr update_macro(expr const & e, unsigned num, expr const * args); // ======================================= std::ostream & operator<<(std::ostream & out, expr const & e); }