/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.yoneda Author: Floris van Doorn -/ --note: modify definition in category.set import .constructions .morphism open eq precategory equiv is_equiv is_trunc open is_trunc.trunctype funext precategory.ops prod.ops set_option pp.beta true namespace yoneda set_option class.conservative false definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : a5 ⟶ a6) (f2 : a4 ⟶ a5) (f3 : a3 ⟶ a4) (f4 : a2 ⟶ a3) (f5 : a1 ⟶ a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc (f1 ∘ f2) ∘ f3 ∘ f4 ∘ f5 = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc ... = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 : assoc --disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set := functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2) (λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1)) proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed -- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1)) begin intros (x, y, z, g, f), apply eq_of_homotopy, intro h, exact (representable_functor_assoc g.2 f.2 h f.1 g.1), end end yoneda attribute precategory_functor [instance] [reducible] namespace nat_trans open morphism functor variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) (H : Π(a : C), is_iso (η a)) include H definition nat_trans_inverse : G ⟹ F := nat_trans.mk (λc, (η c)⁻¹) (λc d f, begin apply iso.con_inv_eq_of_eq_con, apply concat, rotate_left 1, apply assoc, apply iso.eq_inv_con_of_con_eq, apply inverse, apply naturality, end) definition nat_trans_left_inverse : nat_trans_inverse η H ∘ η = nat_trans.id := begin fapply (apD011 nat_trans.mk), apply eq_of_homotopy, intro c, apply inverse_compose, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, fapply is_hset.elim end definition nat_trans_right_inverse : η ∘ nat_trans_inverse η H = nat_trans.id := begin fapply (apD011 nat_trans.mk), apply eq_of_homotopy, intro c, apply compose_inverse, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, fapply is_hset.elim end definition nat_trans_is_iso.mk : is_iso η := is_iso.mk (nat_trans_left_inverse η H) (nat_trans_right_inverse η H) end nat_trans -- Coq uses unit/counit definitions as basic -- open yoneda precategory.product precategory.opposite functor morphism -- --universe levels are given explicitly because Lean uses 6 variables otherwise -- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} := -- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹ -- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G)) -- (is_iso_nat_iso : is_iso nat_iso) -- infix `⊣`:55 := adjoint -- namespace adjoint -- universe variables l1 l2 -- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C) -- end adjoint