/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Properties of functors such as adjoint functors, equivalences, faithful or full functors TODO: Split this file in different files -/ import .constructions.functor function arity open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv namespace category variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} -- TODO: define a structure "adjoint" and then define -- structure is_left_adjoint (F : C ⇒ D) := -- (G : D ⇒ C) -- G -- (is_adjoint : adjoint F G) structure is_left_adjoint [class] (F : C ⇒ D) := (G : D ⇒ C) (η : 1 ⟹ G ∘f F) (ε : F ∘f G ⟹ 1) (H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c)) (K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d)) abbreviation right_adjoint [unfold 4] := @is_left_adjoint.G abbreviation unit [unfold 4] := @is_left_adjoint.η abbreviation counit [unfold 4] := @is_left_adjoint.ε abbreviation counit_unit_eq [unfold 4] := @is_left_adjoint.H abbreviation unit_counit_eq [unfold 4] := @is_left_adjoint.K structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso η) (is_iso_counit : is_iso ε) abbreviation inverse := @is_equivalence.G postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded (there is no unicode superscript F) postfix [parsing_only] `⁻¹F`:std.prec.max_plus := inverse definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f' definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c') definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c') definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) -- infix `⊣`:55 := adjoint infix ` ≃c `:25 := equivalence infix ` ≅c `:25 := isomorphism definition is_equiv_of_fully_faithful [instance] [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : is_equiv (@(to_fun_hom F) c c') := !H definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (f : F c ⟶ F c') : c ⟶ c' := (to_fun_hom F)⁻¹ᶠ f definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') := equiv.mk _ !H definition iso_of_F_iso_F (F : C ⇒ D) [H : fully_faithful F] (c c' : C) (g : F c ≅ F c') : c ≅ c' := begin induction g with g G, induction G with h p q, fapply iso.MK, { rexact (to_fun_hom F)⁻¹ᶠ g}, { rexact (to_fun_hom F)⁻¹ᶠ h}, { exact abstract begin apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp, respect_id, right_inv (to_fun_hom F), right_inv (to_fun_hom F), p], end end}, { exact abstract begin apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp, respect_id, right_inv (to_fun_hom F), right_inv (@(to_fun_hom F) c' c), q], end end} end definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') := begin fapply equiv.MK, { exact to_fun_iso F}, { apply iso_of_F_iso_F}, { exact abstract begin intro f, induction f with f F', induction F' with g p q, apply iso_eq, esimp [iso_of_F_iso_F], apply right_inv end end}, { exact abstract begin intro f, induction f with f F', induction F' with g p q, apply iso_eq, esimp [iso_of_F_iso_F], apply right_inv end end}, end definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) := !is_equivalence.is_iso_unit definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) := !is_equivalence.is_iso_counit definition iso_unit (F : C ⇒ D) [H : is_equivalence F] : F ⁻¹F ∘f F ≅ 1 := (@(iso.mk _) !is_iso_unit)⁻¹ⁱ definition iso_counit (F : C ⇒ D) [H : is_equivalence F] : F ∘f F ⁻¹F ≅ 1 := @(iso.mk _) !is_iso_counit definition full_of_fully_faithful (H : fully_faithful F) : full F := λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv) definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F := λc c' f f' p, is_injective_of_is_embedding p definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F := begin intro c c', apply is_equiv_of_is_surjective_of_is_embedding, { apply is_embedding_of_is_injective, intros f f' p, exact H p}, { apply K} end definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : split_essentially_surjective F := begin intro d, fconstructor, { exact F⁻¹ d}, { exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d} end definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c') [H : is_iso (F f)] : is_iso f := begin fconstructor, { exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹}, { apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]}, { apply eq_of_fn_eq_fn' (to_fun_hom F), rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]}, end definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : F c ≅ F c') : c ≅ c' := begin fconstructor, { exact (to_fun_hom F)⁻¹ᶠ f}, { assert H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)), { have H' : is_iso (to_hom f), from _, exact (right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H'}, exact reflect_is_iso F _}, end theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c') [H : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ := inverse_eq_inverse (idp : to_hom (@(iso.mk f) (reflect_is_iso F f)) = f) end category namespace category section parameters {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1) -- variables (η : Πc, G (F c) ≅ c) (ε : Πd, F (G d) ≅ d) -- (pη : Π(c c' : C) (f : hom c c'), f ∘ to_hom (η c) = to_hom (η c') ∘ G (F f)) -- (pε : Π⦃d d' : D⦄ (f : hom d d'), f ∘ to_hom (ε d) = to_hom (ε d') ∘ F (G f)) private definition ηn : 1 ⟹ G ∘f F := to_inv η private definition εn : F ∘f G ⟹ 1 := to_hom ε private definition ηi (c : C) : G (F c) ≅ c := componentwise_iso η c private definition εi (d : D) : F (G d) ≅ d := componentwise_iso ε d private definition ηi' (c : C) : G (F c) ≅ c := to_fun_iso G (to_fun_iso F (ηi c)⁻¹ⁱ) ⬝i to_fun_iso G (εi (F c)) ⬝i ηi c local attribute ηn εn ηi εi ηi' [reducible] private theorem adj_η_natural {c c' : C} (f : hom c c') : G (F f) ∘ to_inv (ηi' c) = to_inv (ηi' c') ∘ f := let ηi'_nat : G ∘f F ⟹ 1 := calc G ∘f F ⟹ (G ∘f F) ∘f 1 : id_right_natural_rev (G ∘f F) ... ⟹ (G ∘f F) ∘f (G ∘f F) : (G ∘f F) ∘fn ηn ... ⟹ ((G ∘f F) ∘f G) ∘f F : assoc_natural (G ∘f F) G F ... ⟹ (G ∘f (F ∘f G)) ∘f F : assoc_natural_rev G F G ∘nf F ... ⟹ (G ∘f 1) ∘f F : (G ∘fn εn) ∘nf F ... ⟹ G ∘f F : id_right_natural G ∘nf F ... ⟹ 1 : to_hom η in begin refine is_natural_inverse' (G ∘f F) functor.id ηi' ηi'_nat _ f, intro c, esimp, rewrite [+id_left,id_right] end private theorem adjointify_adjH (c : C) : to_hom (εi (F c)) ∘ F (to_hom (ηi' c))⁻¹ = id := begin rewrite [respect_inv], apply comp_inverse_eq_of_eq_comp, rewrite [id_left,↑ηi',+respect_comp,+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq, rewrite [↑εi,-naturality_iso_id ε (F c)], symmetry, exact naturality εn (F (to_hom (ηi c))) end private theorem adjointify_adjK (d : D) : G (to_hom (εi d)) ∘ to_hom (ηi' (G d))⁻¹ⁱ = id := begin apply comp_inverse_eq_of_eq_comp, rewrite [id_left,↑ηi',+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq, rewrite [↑ηi,-naturality_iso_id η (G d),↑εi,naturality_iso_id ε d], exact naturality (to_hom η) (G (to_hom (εi d))), end parameter (G) include η ε definition is_equivalence.mk : is_equivalence F := begin fapply is_equivalence.mk', { exact G}, { fapply nat_trans.mk, { intro c, exact to_inv (ηi' c)}, { intro c c' f, exact adj_η_natural f}}, { exact εn}, { exact adjointify_adjH}, { exact adjointify_adjK}, { exact @(is_iso_nat_trans _) (λc, !is_iso_inverse)}, { unfold εn, apply iso.struct, }, end definition equivalence.MK : C ≃c D := equivalence.mk F is_equivalence.mk end variables {C D E : Precategory} {F : C ⇒ D} --TODO: add variants definition unit_eq_counit_inv (F : C ⇒ D) [H : is_equivalence F] (c : C) : to_fun_hom F (natural_map (unit F) c) = @(is_iso.inverse (counit F (F c))) (@(componentwise_is_iso (counit F)) !is_iso_counit (F c)) := begin apply eq_inverse_of_comp_eq_id, apply counit_unit_eq end definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : fully_faithful F := begin intro c c', fapply adjointify, { intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c}, { intro g, rewrite [+respect_comp,▸*], xrewrite [natural_map_inverse (unit F) c', respect_inv'], apply inverse_comp_eq_of_eq_comp, rewrite [+unit_eq_counit_inv], esimp, exact naturality (counit F)⁻¹ _}, { intro f, xrewrite [▸*,natural_map_inverse (unit F) c'], apply inverse_comp_eq_of_eq_comp, apply naturality (unit F)}, end definition is_isomorphism.mk {F : C ⇒ D} (G : D ⇒ C) (p : G ∘f F = 1) (q : F ∘f G = 1) : is_isomorphism F := begin constructor, { apply fully_faithful_of_is_equivalence, fapply is_equivalence.mk, { exact G}, { apply iso_of_eq p}, { apply iso_of_eq q}}, { fapply adjointify, { exact G}, { exact ap010 to_fun_ob q}, { exact ap010 to_fun_ob p}} end definition is_equiv_of_is_isomorphism (F : C ⇒ D) [H : is_isomorphism F] : is_equiv (to_fun_ob F) := pr2 H definition is_fully_faithful_of_is_isomorphism (F : C ⇒ D) [H : is_isomorphism F] : fully_faithful F := pr1 H local attribute is_fully_faithful_of_is_isomorphism is_equiv_of_is_isomorphism [instance] definition strict_inverse [constructor] (F : C ⇒ D) [H : is_isomorphism F] : D ⇒ C := begin fapply functor.mk, { intro d, exact (to_fun_ob F)⁻¹ᶠ d}, { intro d d' g, exact (to_fun_hom F)⁻¹ᶠ (inv_of_eq !right_inv ∘ g ∘ hom_of_eq !right_inv)}, { intro d, apply inv_eq_of_eq, rewrite [respect_id,id_left], apply left_inverse}, { intro d₁ d₂ d₃ g₂ g₁, apply inv_eq_of_eq, rewrite [respect_comp F,+right_inv (to_fun_hom F)], rewrite [+assoc], esimp, /-apply ap (λx, _ ∘ x), FAILS-/ refine ap (λx, (x ∘ _) ∘ _) _, refine !id_right⁻¹ ⬝ _, rewrite [▸*,-+assoc], refine ap (λx, _ ∘ _ ∘ x) _, exact !right_inverse⁻¹}, end postfix /-[parsing-only]-/ `⁻¹ˢ`:std.prec.max_plus := strict_inverse definition strict_right_inverse (F : C ⇒ D) [H : is_isomorphism F] : F ∘f F⁻¹ˢ = 1 := begin fapply functor_eq, { intro d, esimp, apply right_inv}, { intro d d' g, rewrite [▸*, right_inv (to_fun_hom F), +assoc], rewrite [↑[hom_of_eq,inv_of_eq,iso.to_inv], right_inverse], rewrite [id_left], apply comp_inverse_cancel_right}, end definition strict_left_inverse (F : C ⇒ D) [H : is_isomorphism F] : F⁻¹ˢ ∘f F = 1 := begin fapply functor_eq, { intro d, esimp, apply left_inv}, { intro d d' g, esimp, apply comp_eq_of_eq_inverse_comp, apply comp_inverse_eq_of_eq_comp, apply inv_eq_of_eq, rewrite [+respect_comp,-assoc], apply ap011 (λx y, x ∘ F g ∘ y), { rewrite [adj], rewrite [▸*,respect_inv_of_eq F]}, { rewrite [adj,▸*,respect_hom_of_eq F]}}, end definition is_equivalence_of_is_isomorphism [instance] (F : C ⇒ D) [H : is_isomorphism F] : is_equivalence F := begin fapply is_equivalence.mk, { apply F⁻¹ˢ}, { apply iso_of_eq !strict_left_inverse}, { apply iso_of_eq !strict_right_inverse}, end theorem is_hprop_is_left_adjoint [instance] {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_left_adjoint F) := begin apply is_hprop.mk, intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε' → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K', { intros p q r, induction p, induction q, induction r, esimp, apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim}, assert lem₂ : Π (d : carrier D), (to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d)) ∘ to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d) = id, { intro d, esimp, rewrite [assoc], rewrite [-assoc (G (ε' d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G], rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*], rewrite [respect_comp G], rewrite [assoc,▸*,-assoc (G (ε d))], rewrite [↑functor.compose, -respect_comp G], rewrite [H' (G d)], rewrite [respect_id,▸*,id_right], apply K}, assert lem₃ : Π (d : carrier D), (to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d)) ∘ to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d) = id, { intro d, esimp, rewrite [assoc, -assoc (G' (ε d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G'], rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)], esimp, rewrite [respect_comp G'], rewrite [assoc,▸*,-assoc (G' (ε' d))], rewrite [↑functor.compose, -respect_comp G'], rewrite [H (G' d)], rewrite [respect_id,▸*,id_right], apply K'}, fapply lem₁, { fapply functor.eq_of_pointwise_iso, { fapply change_natural_map, { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)}, { intro d, exact (G' (ε d) ∘ η' (G d))}, { intro d, exact ap (λx, _ ∘ x) !id_left}}, { intro d, fconstructor, { exact (G (ε' d) ∘ η (G' d))}, { exact lem₂ d }, { exact lem₃ d }}}, { clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _, krewrite hom_of_eq_compose_right, rewrite functor.hom_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro c, esimp, refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _, esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]}, { clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _, krewrite inv_of_eq_compose_left, rewrite functor.inv_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro d, esimp, krewrite [respect_comp], rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]} end theorem is_hprop_is_equivalence [instance] {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_equivalence F) := begin assert f : is_equivalence F ≃ Σ(H : is_left_adjoint F), is_iso (unit F) × is_iso (counit F), { fapply equiv.MK, { intro H, induction H, fconstructor: constructor, repeat (esimp;assumption) }, { intro H, induction H with H1 H2, induction H1, induction H2, constructor, repeat (esimp at *;assumption)}, { intro H, induction H with H1 H2, induction H1, induction H2, reflexivity}, { intro H, induction H, reflexivity}}, apply is_trunc_equiv_closed_rev, exact f, end theorem is_hprop_fully_faithful [instance] (F : C ⇒ D) : is_hprop (fully_faithful F) := by unfold fully_faithful; exact _ theorem is_hprop_full [instance] (F : C ⇒ D) : is_hprop (full F) := by unfold full; exact _ theorem is_hprop_faithful [instance] (F : C ⇒ D) : is_hprop (faithful F) := by unfold faithful; exact _ theorem is_hprop_essentially_surjective [instance] (F : C ⇒ D) : is_hprop (essentially_surjective F) := by unfold essentially_surjective; exact _ theorem is_hprop_is_weak_equivalence [instance] (F : C ⇒ D) : is_hprop (is_weak_equivalence F) := by unfold is_weak_equivalence; exact _ theorem is_hprop_is_isomorphism [instance] (F : C ⇒ D) : is_hprop (is_isomorphism F) := by unfold is_isomorphism; exact _ definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := equiv_of_is_hprop (λH, (faithful_of_fully_faithful H, full_of_fully_faithful H)) (λH, fully_faithful_of_full_of_faithful (pr1 H) (pr2 H)) /- alternative proof using direct calculation with equivalences definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := calc fully_faithful F ≃ (Π(c c' : C), is_embedding (to_fun_hom F) × is_surjective (to_fun_hom F)) : pi_equiv_pi_id (λc, pi_equiv_pi_id (λc', !is_equiv_equiv_is_embedding_times_is_surjective)) ... ≃ (Π(c : C), (Π(c' : C), is_embedding (to_fun_hom F)) × (Π(c' : C), is_surjective (to_fun_hom F))) : pi_equiv_pi_id (λc, !equiv_prod_corec) ... ≃ (Π(c c' : C), is_embedding (to_fun_hom F)) × full F : equiv_prod_corec ... ≃ faithful F × full F : prod_equiv_prod_right (pi_equiv_pi_id (λc, pi_equiv_pi_id (λc', !is_embedding_equiv_is_injective))) -/ /- closure properties -/ definition is_isomorphism_id [instance] (C : Precategory) : is_isomorphism (1 : C ⇒ C) := is_isomorphism.mk 1 !functor.id_right !functor.id_right definition is_isomorphism_strict_inverse (F : C ⇒ D) [K : is_isomorphism F] : is_isomorphism F⁻¹ˢ := is_isomorphism.mk F !strict_right_inverse !strict_left_inverse definition is_isomorphism_compose (G : D ⇒ E) (F : C ⇒ D) [H : is_isomorphism G] [K : is_isomorphism F] : is_isomorphism (G ∘f F) := is_isomorphism.mk (F⁻¹ˢ ∘f G⁻¹ˢ) abstract begin rewrite [functor.assoc,-functor.assoc F⁻¹ˢ,strict_left_inverse,functor.id_right, strict_left_inverse] end end abstract begin rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right, strict_right_inverse] end end definition is_equivalence_id (C : Precategory) : is_equivalence (1 : C ⇒ C) := _ definition is_equivalence_strict_inverse (F : C ⇒ D) [K : is_equivalence F] : is_equivalence F ⁻¹F := is_equivalence.mk F (iso_counit F) (iso_unit F) /- definition is_equivalence_compose (G : D ⇒ E) (F : C ⇒ D) [H : is_equivalence G] [K : is_equivalence F] : is_equivalence (G ∘f F) := is_equivalence.mk (F ⁻¹F ∘f G ⁻¹F) abstract begin rewrite [functor.assoc,-functor.assoc F ⁻¹F], -- refine ((_ ∘fi _) ∘if _) ⬝i _, end end abstract begin rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right, strict_right_inverse] end end definition is_equivalence_equiv (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1), sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 := sorry definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≅c D := sorry definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := sorry definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ≃c D := sorry definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F) : is_isomorphism F := sorry definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) := sorry -/ end category