/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also consider structures with both, where the two are related by x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair) x ≤ y ↔ (x < y ∨ x = y) (strong_order_pair) These might not hold constructively in some applications, but we can define additional structures with both < and ≤ as needed. -/ import logic.eq logic.connectives open eq eq.ops namespace algebra variable {A : Type} /- overloaded symbols -/ structure has_le [class] (A : Type) := (le : A → A → Prop) structure has_lt [class] (A : Type) := (lt : A → A → Prop) infixl `<=` := has_le.le infixl `≤` := has_le.le infixl `<` := has_lt.lt definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a notation a ≥ b := has_le.ge a b notation a >= b := has_le.ge a b definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a notation a > b := has_lt.gt a b /- weak orders -/ structure weak_order [class] (A : Type) extends has_le A := (le_refl : ∀a, le a a) (le_trans : ∀a b c, le a b → le b c → le a c) (le_antisymm : ∀a b, le a b → le b a → a = b) section variable [s : weak_order A] include s theorem le.refl (a : A) : a ≤ a := !weak_order.le_refl theorem le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans theorem ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1 theorem le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm -- Alternate syntax. A definition does not migrate well. theorem eq_of_le_of_ge {a b : A} : a ≤ b → b ≤ a → a = b := !le.antisymm end structure linear_weak_order [class] (A : Type) extends weak_order A := (le_total : ∀a b, le a b ∨ le b a) theorem le.total [s : linear_weak_order A] (a b : A) : a ≤ b ∨ b ≤ a := !linear_weak_order.le_total /- strict orders -/ structure strict_order [class] (A : Type) extends has_lt A := (lt_irrefl : ∀a, ¬ lt a a) (lt_trans : ∀a b c, lt a b → lt b c → lt a c) section variable [s : strict_order A] include s theorem lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl theorem not_lt_self (a : A) : ¬ a < a := !lt.irrefl -- alternate syntax theorem lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans theorem gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1 theorem ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b := assume eq_ab : a = b, show false, from lt.irrefl b (eq_ab ▸ lt_ab) theorem ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b := ne.symm (ne_of_lt gt_ab) theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H H1) theorem not_lt_of_gt {a b : A} (H : a > b) : ¬ a < b := !lt.asymm H -- alternate syntax end /- well-founded orders -/ -- TODO: do these duplicate what Leo has done? if so, eliminate structure wf_strict_order [class] (A : Type) extends strict_order A := (wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x) definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf.rec_on x H /- structures with a weak and a strict order -/ structure order_pair [class] (A : Type) extends weak_order A, has_lt A := (le_of_lt : ∀ a b, lt a b → le a b) (lt_of_lt_of_le : ∀ a b c, lt a b → le b c → lt a c) (lt_of_le_of_lt : ∀ a b c, le a b → lt b c → lt a c) (lt_irrefl : ∀ a, ¬ lt a a) --lt_iff_le_and_ne : a < b ↔ (a ≤ b ∧ a ≠ b) section variable [s : order_pair A] variables {a b c : A} include s theorem le_of_lt : a < b → a ≤ b := !order_pair.le_of_lt theorem lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := !order_pair.lt_of_lt_of_le theorem lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := !order_pair.lt_of_le_of_lt private theorem lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := !order_pair.lt_irrefl private theorem lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := lt_of_lt_of_le lt_ab (le_of_lt lt_bc) definition order_pair.to_strict_order [trans-instance] [coercion] [reducible] : strict_order A := ⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄ theorem gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1 theorem gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1 theorem not_le_of_gt (H : a > b) : ¬ a ≤ b := assume H1 : a ≤ b, lt.irrefl _ (lt_of_lt_of_le H H1) theorem not_lt_of_ge (H : a ≥ b) : ¬ a < b := assume H1 : a < b, lt.irrefl _ (lt_of_le_of_lt H H1) end structure strong_order_pair [class] (A : Type) extends weak_order A, has_lt A := --order_pair A := (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b ∨ a = b) (lt_irrefl : ∀ a, ¬ lt a a) theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ∨ a = b := !strong_order_pair.le_iff_lt_or_eq theorem lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ∨ a = b := iff.mp le_iff_lt_or_eq le_ab theorem le_of_lt_or_eq [s : strong_order_pair A] {a b : A} (lt_or_eq : a < b ∨ a = b) : a ≤ b := iff.mp' le_iff_lt_or_eq lt_or_eq private theorem lt_irrefl' [s : strong_order_pair A] (a : A) : ¬ a < a := !strong_order_pair.lt_irrefl private theorem le_of_lt' [s : strong_order_pair A] (a b : A) : a < b → a ≤ b := take Hlt, le_of_lt_or_eq (or.inl Hlt) private theorem lt_iff_le_and_ne [s : strong_order_pair A] {a b : A} : a < b ↔ (a ≤ b ∧ a ≠ b) := iff.intro (take Hlt, and.intro (le_of_lt_or_eq (or.inl Hlt)) (take Hab, absurd (Hab ▸ Hlt) !lt_irrefl')) (take Hand, have Hor : a < b ∨ a = b, from lt_or_eq_of_le (and.left Hand), or_resolve_left Hor (and.right Hand)) theorem lt_of_le_of_ne [s : strong_order_pair A] {a b : A} : a ≤ b → a ≠ b → a < b := take H1 H2, iff.mp' lt_iff_le_and_ne (and.intro H1 H2) private theorem ne_of_lt' [s : strong_order_pair A] {a b : A} (H : a < b) : a ≠ b := and.right ((iff.mp lt_iff_le_and_ne) H) private theorem lt_of_lt_of_le' [s : strong_order_pair A] (a b c : A) : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt' _ _ lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm (le_of_lt' _ _ lt_ab) le_ba, show false, from ne_of_lt' lt_ab eq_ab, show a < c, from iff.mp' (lt_iff_le_and_ne) (and.intro le_ac ne_ac) theorem lt_of_le_of_lt' [s : strong_order_pair A] (a b c : A) : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt' _ _ lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisymm (le_of_lt' _ _ lt_bc) le_cb, show false, from ne_of_lt' lt_bc eq_bc, show a < c, from iff.mp' (lt_iff_le_and_ne) (and.intro le_ac ne_ac) definition strong_order_pair.to_order_pair [trans-instance] [coercion] [reducible] [s : strong_order_pair A] : order_pair A := ⦃ order_pair, s, lt_irrefl := lt_irrefl', le_of_lt := le_of_lt', lt_of_le_of_lt := lt_of_le_of_lt', lt_of_lt_of_le := lt_of_lt_of_le' ⦄ -- We can also construct a strong order pair by defining a strict order, and then defining -- x ≤ y ↔ x < y ∨ x = y structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A := (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b ∨ a = b) private theorem le_refl (s : strict_order_with_le A) (a : A) : a ≤ a := iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl) private theorem le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c := or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc) (assume lt_bc : b < c, iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc))) (assume eq_bc : b = c, eq_bc ▸ le_ab)) (assume eq_ab : a = b, eq_ab⁻¹ ▸ le_bc) private theorem le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b := or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba) (assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a)) (assume eq_ba : b = a, eq_ba⁻¹)) (assume eq_ab : a = b, eq_ab) private theorem lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b ∧ a ≠ b := iff.intro (assume lt_ab : a < b, have le_ab : a ≤ b, from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab), show a ≤ b ∧ a ≠ b, from and.intro le_ab (ne_of_lt lt_ab)) (assume H : a ≤ b ∧ a ≠ b, have H1 : a < b ∨ a = b, from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H), show a < b, from or_resolve_left H1 (and.elim_right H)) private theorem le_of_lt' (s : strict_order_with_le A) (a b : A) : a < b → a ≤ b := take Hlt, and.left (iff.mp (lt_iff_le_ne s _ _) Hlt) private theorem lt_trans (s : strict_order_with_le A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := have le_ab : a ≤ b, from le_of_lt' s _ _ lt_ab, have le_bc : b ≤ c, from le_of_lt' s _ _ lt_bc, have le_ac : a ≤ c, from le_trans s _ _ _ le_ab le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le_antisymm s a b le_ab le_ba, have ne_ab : a ≠ b, from and.elim_right ((iff.mp (lt_iff_le_ne s a b)) lt_ab), ne_ab eq_ab, show a < c, from (iff.mp' !lt_iff_le_ne) (and.intro le_ac ne_ac) theorem lt_of_lt_of_le' (s : strict_order_with_le A) (a b c : A) : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le_trans s _ _ _ (le_of_lt' s _ _ lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le_antisymm s _ _ (le_of_lt' s _ _ lt_ab) le_ba, show false, from ne_of_lt lt_ab eq_ab, show a < c, from iff.mp' (lt_iff_le_ne s _ _) (and.intro le_ac ne_ac) theorem lt_of_le_of_lt'' (s : strict_order_with_le A) (a b c : A) : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le_trans s _ _ _ le_ab (le_of_lt' s _ _ lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le_antisymm s _ _ (le_of_lt' s _ _ lt_bc) le_cb, show false, from ne_of_lt lt_bc eq_bc, show a < c, from iff.mp' (lt_iff_le_ne s _ _) (and.intro le_ac ne_ac) definition strict_order_with_le.to_order_pair [trans-instance] [coercion] [reducible] [s : strict_order_with_le A] : strong_order_pair A := ⦃ strong_order_pair, s, le_refl := le_refl s, le_trans := le_trans s, le_antisymm := le_antisymm s ⦄ --le_of_lt := le_of_lt' s, --lt_of_le_of_lt := lt_of_le_of_lt' s, --lt_of_lt_of_le := lt_of_lt_of_le' s ⦄ --lt_iff_le_and_ne := lt_iff_le_ne s ⦄ /- linear orders -/ structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A, linear_weak_order A definition linear_strong_order_pair.to_linear_order_pair [trans-instance] [coercion] [reducible] [s : linear_strong_order_pair A] : linear_order_pair A := ⦃ linear_order_pair, s, strong_order_pair.to_order_pair⦄ section variable [s : linear_strong_order_pair A] variables (a b c : A) include s theorem lt.trichotomy : a < b ∨ a = b ∨ b < a := or.elim (le.total a b) (assume H : a ≤ b, or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inl H1) (assume H1, or.inr (or.inl H1))) (assume H : b ≤ a, or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inr (or.inr H1)) (assume H1, or.inr (or.inl (H1⁻¹)))) theorem lt.by_cases {a b : A} {P : Prop} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := or.elim !lt.trichotomy (assume H, H1 H) (assume H, or.elim H (assume H', H2 H') (assume H', H3 H')) theorem le_of_not_gt {a b : A} (H : ¬ a > b) : a ≤ b := lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') theorem lt_of_not_ge {a b : A} (H : ¬ a ≥ b) : a < b := lt.by_cases (assume H', absurd (le_of_lt H') H) (assume H', absurd (H' ▸ !le.refl) H) (assume H', H') theorem lt_or_ge : a < b ∨ a ≥ b := lt.by_cases (assume H1 : a < b, or.inl H1) (assume H1 : a = b, or.inr (H1 ▸ le.refl a)) (assume H1 : a > b, or.inr (le_of_lt H1)) theorem le_or_gt : a ≤ b ∨ a > b := !or.swap (lt_or_ge b a) theorem lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b ∨ a > b := lt.by_cases (assume H1, or.inl H1) (assume H1, absurd H1 H) (assume H1, or.inr H1) end structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A := (decidable_lt : decidable_rel lt) section variable [s : decidable_linear_order A] variables {a b c d : A} include s open decidable definition decidable_lt [instance] : decidable (a < b) := @decidable_linear_order.decidable_lt _ _ _ _ definition decidable_le [instance] : decidable (a ≤ b) := by_cases (assume H : a < b, inl (le_of_lt H)) (assume H : ¬ a < b, have H1 : b ≤ a, from le_of_not_gt H, by_cases (assume H2 : b < a, inr (not_le_of_gt H2)) (assume H2 : ¬ b < a, inl (le_of_not_gt H2))) definition has_decidable_eq [instance] : decidable (a = b) := by_cases (assume H : a ≤ b, by_cases (assume H1 : b ≤ a, inl (le.antisymm H H1)) (assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a)))) (assume H : ¬ a ≤ b, (inr (assume H1 : a = b, H (H1 ▸ !le.refl)))) -- testing equality first may result in more definitional equalities definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B := if a = b then t_eq else (if a < b then t_lt else t_gt) theorem lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) : lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H theorem lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) : lt.cases a b t_lt t_eq t_gt = t_lt := if_neg (ne_of_lt H) ⬝ if_pos H theorem lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) : lt.cases a b t_lt t_eq t_gt = t_gt := if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H) definition max (a b : A) : A := if a < b then b else a definition min (a b : A) : A := if a < b then a else b theorem max_a_a (a : A) : a = max a a := eq.rec_on !if_t_t rfl theorem max.eq_right {a b : A} (H : a < b) : max a b = b := if_pos H theorem max.eq_left {a b : A} (H : ¬ a < b) : max a b = a := if_neg H theorem max.right_eq {a b : A} (H : a < b) : b = max a b := eq.rec_on (max.eq_right H) rfl theorem max.left_eq {a b : A} (H : ¬ a < b) : a = max a b := eq.rec_on (max.eq_left H) rfl theorem max.left (a b : A) : a ≤ max a b := decidable.by_cases (λ h : a < b, le_of_lt (eq.rec_on (max.right_eq h) h)) (λ h : ¬ a < b, eq.rec_on (max.eq_left h) !le.refl) theorem eq_or_lt_of_not_lt (H : ¬ a < b) : a = b ∨ b < a := have H' : b = a ∨ b < a, from or.swap (lt_or_eq_of_le (le_of_not_gt H)), or.elim H' (take H'' : b = a, or.inl (symm H'')) (take H'' : b < a, or.inr H'') theorem max.right (a b : A) : b ≤ max a b := decidable.by_cases (λ h : a < b, eq.rec_on (max.eq_right h) !le.refl) (λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h) (λ heq, eq.rec_on heq (eq.rec_on (max_a_a a) !le.refl)) (λ h : b < a, have aux : a = max a b, from max.left_eq (lt.asymm h), eq.rec_on aux (le_of_lt h))) end end algebra /- For reference, these are all the transitivity rules defined in this file: calc_trans le.trans calc_trans lt.trans calc_trans lt_of_lt_of_le calc_trans lt_of_le_of_lt calc_trans ge.trans calc_trans gt.trans calc_trans gt_of_gt_of_ge calc_trans gt_of_ge_of_gt -/