/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Here an "ordered_ring" is partially ordered ring, which is ordered with respect to both a weak order and an associated strict order. Our numeric structures (int, rat, and real) will be instances of "linear_ordered_comm_ring". This development is modeled after Isabelle's library. -/ import algebra.ordered_group algebra.ring open eq eq.ops namespace algebra variable {A : Type} definition absurd_a_lt_a {B : Type} {a : A} [s : strict_order A] (H : a < a) : B := absurd H (lt.irrefl a) structure ordered_semiring [class] (A : Type) extends has_mul A, has_zero A, has_lt A, -- TODO: remove hack for improving performance semiring A, ordered_cancel_comm_monoid A, zero_ne_one_class A := (mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b)) (mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c)) (mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b)) (mul_lt_mul_of_pos_right: ∀a b c, lt a b → lt zero c → lt (mul a c) (mul b c)) section variable [s : ordered_semiring A] variables (a b c d e : A) include s theorem mul_le_mul_of_nonneg_left {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b := !ordered_semiring.mul_le_mul_of_nonneg_left Hab Hc theorem mul_le_mul_of_nonneg_right {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c := !ordered_semiring.mul_le_mul_of_nonneg_right Hab Hc -- TODO: there are four variations, depending on which variables we assume to be nonneg theorem mul_le_mul {a b c d : A} (Hac : a ≤ c) (Hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d := calc a * b ≤ c * b : mul_le_mul_of_nonneg_right Hac nn_b ... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 := begin have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb, rewrite zero_mul at H, exact H end theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 := begin have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha, rewrite mul_zero at H, exact H end theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 := begin have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb, rewrite zero_mul at H, exact H end theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) : c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc theorem mul_lt_mul_of_pos_right {a b c : A} (Hab : a < b) (Hc : 0 < c) : a * c < b * c := !ordered_semiring.mul_lt_mul_of_pos_right Hab Hc -- TODO: once again, there are variations theorem mul_lt_mul {a b c d : A} (Hac : a < c) (Hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) : a * b < c * d := calc a * b < c * b : mul_lt_mul_of_pos_right Hac pos_b ... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 := begin have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb, rewrite zero_mul at H, exact H end theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 := begin have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha, rewrite mul_zero at H, exact H end theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 := begin have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb, rewrite zero_mul at H, exact H end end structure linear_ordered_semiring [class] (A : Type) extends ordered_semiring A, linear_strong_order_pair A section variable [s : linear_ordered_semiring A] variables {a b c : A} include s theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b := lt_of_not_ge (assume H1 : b ≤ a, have H2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left H1 Hc, not_lt_of_ge H2 H) theorem lt_of_mul_lt_mul_right (H : a * c < b * c) (Hc : c ≥ 0) : a < b := lt_of_not_ge (assume H1 : b ≤ a, have H2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right H1 Hc, not_lt_of_ge H2 H) theorem le_of_mul_le_mul_left (H : c * a ≤ c * b) (Hc : c > 0) : a ≤ b := le_of_not_gt (assume H1 : b < a, have H2 : c * b < c * a, from mul_lt_mul_of_pos_left H1 Hc, not_le_of_gt H2 H) theorem le_of_mul_le_mul_right (H : a * c ≤ b * c) (Hc : c > 0) : a ≤ b := le_of_not_gt (assume H1 : b < a, have H2 : b * c < a * c, from mul_lt_mul_of_pos_right H1 Hc, not_le_of_gt H2 H) theorem le_iff_mul_le_mul_left (a b : A) {c : A} (H : c > 0) : a ≤ b ↔ c * a ≤ c * b := iff.intro (assume H', mul_le_mul_of_nonneg_left H' (le_of_lt H)) (assume H', le_of_mul_le_mul_left H' H) theorem le_iff_mul_le_mul_right (a b : A) {c : A} (H : c > 0) : a ≤ b ↔ a * c ≤ b * c := iff.intro (assume H', mul_le_mul_of_nonneg_right H' (le_of_lt H)) (assume H', le_of_mul_le_mul_right H' H) theorem pos_of_mul_pos_left (H : 0 < a * b) (H1 : 0 ≤ a) : 0 < b := lt_of_not_ge (assume H2 : b ≤ 0, have H3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos H1 H2, not_lt_of_ge H3 H) theorem pos_of_mul_pos_right (H : 0 < a * b) (H1 : 0 ≤ b) : 0 < a := lt_of_not_ge (assume H2 : a ≤ 0, have H3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg H2 H1, not_lt_of_ge H3 H) theorem nonneg_of_mul_nonneg_left (H : 0 ≤ a * b) (H1 : 0 < a) : 0 ≤ b := le_of_not_gt (assume H2 : b < 0, not_le_of_gt (mul_neg_of_pos_of_neg H1 H2) H) theorem nonneg_of_mul_nonneg_right (H : 0 ≤ a * b) (H1 : 0 < b) : 0 ≤ a := le_of_not_gt (assume H2 : a < 0, not_le_of_gt (mul_neg_of_neg_of_pos H2 H1) H) theorem neg_of_mul_neg_left (H : a * b < 0) (H1 : 0 ≤ a) : b < 0 := lt_of_not_ge (assume H2 : b ≥ 0, not_lt_of_ge (mul_nonneg H1 H2) H) theorem neg_of_mul_neg_right (H : a * b < 0) (H1 : 0 ≤ b) : a < 0 := lt_of_not_ge (assume H2 : a ≥ 0, not_lt_of_ge (mul_nonneg H2 H1) H) theorem nonpos_of_mul_nonpos_left (H : a * b ≤ 0) (H1 : 0 < a) : b ≤ 0 := le_of_not_gt (assume H2 : b > 0, not_le_of_gt (mul_pos H1 H2) H) theorem nonpos_of_mul_nonpos_right (H : a * b ≤ 0) (H1 : 0 < b) : a ≤ 0 := le_of_not_gt (assume H2 : a > 0, not_le_of_gt (mul_pos H2 H1) H) end structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A, zero_ne_one_class A := (mul_nonneg : ∀a b, le zero a → le zero b → le zero (mul a b)) (mul_pos : ∀a b, lt zero a → lt zero b → lt zero (mul a b)) theorem ordered_ring.mul_le_mul_of_nonneg_left [s : ordered_ring A] {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : c * a ≤ c * b := have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab, assert H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1, begin rewrite mul_sub_left_distrib at H2, exact (iff.mp !sub_nonneg_iff_le H2) end theorem ordered_ring.mul_le_mul_of_nonneg_right [s : ordered_ring A] {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) : a * c ≤ b * c := have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab, assert H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc, begin rewrite mul_sub_right_distrib at H2, exact (iff.mp !sub_nonneg_iff_le H2) end theorem ordered_ring.mul_lt_mul_of_pos_left [s : ordered_ring A] {a b c : A} (Hab : a < b) (Hc : 0 < c) : c * a < c * b := have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab, assert H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1, begin rewrite mul_sub_left_distrib at H2, exact (iff.mp !sub_pos_iff_lt H2) end theorem ordered_ring.mul_lt_mul_of_pos_right [s : ordered_ring A] {a b c : A} (Hab : a < b) (Hc : 0 < c) : a * c < b * c := have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab, assert H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc, begin rewrite mul_sub_right_distrib at H2, exact (iff.mp !sub_pos_iff_lt H2) end definition ordered_ring.to_ordered_semiring [trans-instance] [coercion] [reducible] [s : ordered_ring A] : ordered_semiring A := ⦃ ordered_semiring, s, mul_zero := mul_zero, zero_mul := zero_mul, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @le_of_add_le_add_left A s, mul_le_mul_of_nonneg_left := @ordered_ring.mul_le_mul_of_nonneg_left A s, mul_le_mul_of_nonneg_right := @ordered_ring.mul_le_mul_of_nonneg_right A s, mul_lt_mul_of_pos_left := @ordered_ring.mul_lt_mul_of_pos_left A s, mul_lt_mul_of_pos_right := @ordered_ring.mul_lt_mul_of_pos_right A s, lt_of_add_lt_add_left := @lt_of_add_lt_add_left A s⦄ section variable [s : ordered_ring A] variables {a b c : A} include s theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b := have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc, assert H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc', have H2 : -(c * b) ≤ -(c * a), begin rewrite [-*neg_mul_eq_neg_mul at H1], exact H1 end, iff.mp !neg_le_neg_iff_le H2 theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c := have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc, assert H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc', have H2 : -(b * c) ≤ -(a * c), begin rewrite [-*neg_mul_eq_mul_neg at H1], exact H1 end, iff.mp !neg_le_neg_iff_le H2 theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b := begin have H : 0 * b ≤ a * b, from mul_le_mul_of_nonpos_right Ha Hb, rewrite zero_mul at H, exact H end theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b := have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc, assert H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc', have H2 : -(c * b) < -(c * a), begin rewrite [-*neg_mul_eq_neg_mul at H1], exact H1 end, iff.mp !neg_lt_neg_iff_lt H2 theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c := have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc, assert H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc', have H2 : -(b * c) < -(a * c), begin rewrite [-*neg_mul_eq_mul_neg at H1], exact H1 end, iff.mp !neg_lt_neg_iff_lt H2 theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b := begin have H : 0 * b < a * b, from mul_lt_mul_of_neg_right Ha Hb, rewrite zero_mul at H, exact H end end -- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the -- class instance structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A := (zero_lt_one : lt zero one) -- print fields linear_ordered_semiring definition linear_ordered_ring.to_linear_ordered_semiring [trans-instance] [coercion] [reducible] [s : linear_ordered_ring A] : linear_ordered_semiring A := ⦃ linear_ordered_semiring, s, mul_zero := mul_zero, zero_mul := zero_mul, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @le_of_add_le_add_left A s, mul_le_mul_of_nonneg_left := @mul_le_mul_of_nonneg_left A s, mul_le_mul_of_nonneg_right := @mul_le_mul_of_nonneg_right A s, mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left A s, mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right A s, le_total := linear_ordered_ring.le_total, lt_of_add_lt_add_left := @lt_of_add_lt_add_left A s ⦄ structure linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_ring A, comm_monoid A theorem linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero [s : linear_ordered_comm_ring A] {a b : A} (H : a * b = 0) : a = 0 ∨ b = 0 := lt.by_cases (assume Ha : 0 < a, lt.by_cases (assume Hb : 0 < b, begin have H1 : 0 < a * b, from mul_pos Ha Hb, rewrite H at H1, apply absurd_a_lt_a H1 end) (assume Hb : 0 = b, or.inr (Hb⁻¹)) (assume Hb : 0 > b, begin have H1 : 0 > a * b, from mul_neg_of_pos_of_neg Ha Hb, rewrite H at H1, apply absurd_a_lt_a H1 end)) (assume Ha : 0 = a, or.inl (Ha⁻¹)) (assume Ha : 0 > a, lt.by_cases (assume Hb : 0 < b, begin have H1 : 0 > a * b, from mul_neg_of_neg_of_pos Ha Hb, rewrite H at H1, apply absurd_a_lt_a H1 end) (assume Hb : 0 = b, or.inr (Hb⁻¹)) (assume Hb : 0 > b, begin have H1 : 0 < a * b, from mul_pos_of_neg_of_neg Ha Hb, rewrite H at H1, apply absurd_a_lt_a H1 end)) -- Linearity implies no zero divisors. Doesn't need commutativity. definition linear_ordered_comm_ring.to_integral_domain [trans-instance] [coercion] [reducible] [s: linear_ordered_comm_ring A] : integral_domain A := ⦃ integral_domain, s, eq_zero_or_eq_zero_of_mul_eq_zero := @linear_ordered_comm_ring.eq_zero_or_eq_zero_of_mul_eq_zero A s ⦄ section variable [s : linear_ordered_ring A] variables (a b c : A) include s theorem mul_self_nonneg : a * a ≥ 0 := or.elim (le.total 0 a) (assume H : a ≥ 0, mul_nonneg H H) (assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H) theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1 theorem zero_lt_one : 0 < (1:A) := linear_ordered_ring.zero_lt_one A theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) : (a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := lt.by_cases (assume Ha : 0 < a, lt.by_cases (assume Hb : 0 < b, or.inl (and.intro Ha Hb)) (assume Hb : 0 = b, begin rewrite [-Hb at Hab, mul_zero at Hab], apply absurd_a_lt_a Hab end) (assume Hb : b < 0, absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb)))) (assume Ha : 0 = a, begin rewrite [-Ha at Hab, zero_mul at Hab], apply absurd_a_lt_a Hab end) (assume Ha : a < 0, lt.by_cases (assume Hb : 0 < b, absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb))) (assume Hb : 0 = b, begin rewrite [-Hb at Hab, mul_zero at Hab], apply absurd_a_lt_a Hab end) (assume Hb : b < 0, or.inr (and.intro Ha Hb))) theorem gt_of_mul_lt_mul_neg_left {a b c : A} (H : c * a < c * b) (Hc : c ≤ 0) : a > b := have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc, have H2 : -(c * b) < -(c * a), from iff.mp' (neg_lt_neg_iff_lt _ _) H, have H3 : (-c) * b < (-c) * a, from calc (-c) * b = - (c * b) : neg_mul_eq_neg_mul ... < -(c * a) : H2 ... = (-c) * a : neg_mul_eq_neg_mul, lt_of_mul_lt_mul_left H3 nhc theorem zero_gt_neg_one : -1 < (0:A) := neg_zero ▸ (neg_lt_neg zero_lt_one) theorem le_of_mul_le_of_ge_one {a b c : A} (H : a * c ≤ b) (Hb : b ≥ 0) (Hc : c ≥ 1) : a ≤ b := have H' : a * c ≤ b * c, from calc a * c ≤ b : H ... = b * 1 : mul_one ... ≤ b * c : mul_le_mul_of_nonneg_left Hc Hb, le_of_mul_le_mul_right H' (lt_of_lt_of_le zero_lt_one Hc) end /- TODO: Isabelle's library has all kinds of cancelation rules for the simplifier. Search on mult_le_cancel_right1 in Rings.thy. -/ structure decidable_linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_comm_ring A, decidable_linear_ordered_comm_group A section variable [s : decidable_linear_ordered_comm_ring A] variables {a b c : A} include s definition sign (a : A) : A := lt.cases a 0 (-1) 0 1 theorem sign_of_neg (H : a < 0) : sign a = -1 := lt.cases_of_lt H theorem sign_zero : sign 0 = (0:A) := lt.cases_of_eq rfl theorem sign_of_pos (H : a > 0) : sign a = 1 := lt.cases_of_gt H theorem sign_one : sign 1 = (1:A) := sign_of_pos zero_lt_one theorem sign_neg_one : sign (-1) = -(1:A) := sign_of_neg (neg_neg_of_pos zero_lt_one) theorem sign_sign (a : A) : sign (sign a) = sign a := lt.by_cases (assume H : a > 0, calc sign (sign a) = sign 1 : by rewrite (sign_of_pos H) ... = 1 : by rewrite sign_one ... = sign a : by rewrite (sign_of_pos H)) (assume H : 0 = a, calc sign (sign a) = sign (sign 0) : by rewrite H ... = sign 0 : by rewrite sign_zero at {1} ... = sign a : by rewrite -H) (assume H : a < 0, calc sign (sign a) = sign (-1) : by rewrite (sign_of_neg H) ... = -1 : by rewrite sign_neg_one ... = sign a : by rewrite (sign_of_neg H)) theorem pos_of_sign_eq_one (H : sign a = 1) : a > 0 := lt.by_cases (assume H1 : 0 < a, H1) (assume H1 : 0 = a, begin rewrite [-H1 at H, sign_zero at H], apply absurd H zero_ne_one end) (assume H1 : 0 > a, have H2 : -1 = 1, from (sign_of_neg H1)⁻¹ ⬝ H, absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one) theorem eq_zero_of_sign_eq_zero (H : sign a = 0) : a = 0 := lt.by_cases (assume H1 : 0 < a, absurd (H⁻¹ ⬝ sign_of_pos H1) zero_ne_one) (assume H1 : 0 = a, H1⁻¹) (assume H1 : 0 > a, have H2 : 0 = -1, from H⁻¹ ⬝ sign_of_neg H1, have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero, absurd (H3⁻¹) zero_ne_one) theorem neg_of_sign_eq_neg_one (H : sign a = -1) : a < 0 := lt.by_cases (assume H1 : 0 < a, have H2 : -1 = 1, from H⁻¹ ⬝ (sign_of_pos H1), absurd ((eq_zero_of_neg_eq H2)⁻¹) zero_ne_one) (assume H1 : 0 = a, have H2 : (0:A) = -1, begin rewrite [-H1 at H, sign_zero at H], exact H end, have H3 : 1 = 0, from eq_neg_of_eq_neg H2 ⬝ neg_zero, absurd (H3⁻¹) zero_ne_one) (assume H1 : 0 > a, H1) theorem sign_neg (a : A) : sign (-a) = -(sign a) := lt.by_cases (assume H1 : 0 < a, calc sign (-a) = -1 : sign_of_neg (neg_neg_of_pos H1) ... = -(sign a) : by rewrite (sign_of_pos H1)) (assume H1 : 0 = a, calc sign (-a) = sign (-0) : by rewrite H1 ... = sign 0 : by rewrite neg_zero ... = 0 : by rewrite sign_zero ... = -0 : by rewrite neg_zero ... = -(sign 0) : by rewrite sign_zero ... = -(sign a) : by rewrite -H1) (assume H1 : 0 > a, calc sign (-a) = 1 : sign_of_pos (neg_pos_of_neg H1) ... = -(-1) : by rewrite neg_neg ... = -(sign a) : sign_of_neg H1) theorem sign_mul (a b : A) : sign (a * b) = sign a * sign b := lt.by_cases (assume z_lt_a : 0 < a, lt.by_cases (assume z_lt_b : 0 < b, by rewrite [sign_of_pos z_lt_a, sign_of_pos z_lt_b, sign_of_pos (mul_pos z_lt_a z_lt_b), one_mul]) (assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero]) (assume z_gt_b : 0 > b, by rewrite [sign_of_pos z_lt_a, sign_of_neg z_gt_b, sign_of_neg (mul_neg_of_pos_of_neg z_lt_a z_gt_b), one_mul])) (assume z_eq_a : 0 = a, by rewrite [-z_eq_a, zero_mul, *sign_zero, zero_mul]) (assume z_gt_a : 0 > a, lt.by_cases (assume z_lt_b : 0 < b, by rewrite [sign_of_neg z_gt_a, sign_of_pos z_lt_b, sign_of_neg (mul_neg_of_neg_of_pos z_gt_a z_lt_b), mul_one]) (assume z_eq_b : 0 = b, by rewrite [-z_eq_b, mul_zero, *sign_zero, mul_zero]) (assume z_gt_b : 0 > b, by rewrite [sign_of_neg z_gt_a, sign_of_neg z_gt_b, sign_of_pos (mul_pos_of_neg_of_neg z_gt_a z_gt_b), neg_mul_neg, one_mul])) theorem abs_eq_sign_mul (a : A) : abs a = sign a * a := lt.by_cases (assume H1 : 0 < a, calc abs a = a : abs_of_pos H1 ... = 1 * a : by rewrite one_mul ... = sign a * a : by rewrite (sign_of_pos H1)) (assume H1 : 0 = a, calc abs a = abs 0 : by rewrite H1 ... = 0 : by rewrite abs_zero ... = 0 * a : by rewrite zero_mul ... = sign 0 * a : by rewrite sign_zero ... = sign a * a : by rewrite H1) (assume H1 : a < 0, calc abs a = -a : abs_of_neg H1 ... = -1 * a : by rewrite neg_eq_neg_one_mul ... = sign a * a : by rewrite (sign_of_neg H1)) theorem eq_sign_mul_abs (a : A) : a = sign a * abs a := lt.by_cases (assume H1 : 0 < a, calc a = abs a : abs_of_pos H1 ... = 1 * abs a : by rewrite one_mul ... = sign a * abs a : by rewrite (sign_of_pos H1)) (assume H1 : 0 = a, calc a = 0 : H1⁻¹ ... = 0 * abs a : by rewrite zero_mul ... = sign 0 * abs a : by rewrite sign_zero ... = sign a * abs a : by rewrite H1) (assume H1 : a < 0, calc a = -(-a) : by rewrite neg_neg ... = -abs a : by rewrite (abs_of_neg H1) ... = -1 * abs a : by rewrite neg_eq_neg_one_mul ... = sign a * abs a : by rewrite (sign_of_neg H1)) theorem abs_dvd_iff (a b : A) : abs a ∣ b ↔ a ∣ b := abs.by_cases !iff.refl !neg_dvd_iff_dvd theorem dvd_abs_iff (a b : A) : a ∣ abs b ↔ a ∣ b := abs.by_cases !iff.refl !dvd_neg_iff_dvd theorem abs_mul (a b : A) : abs (a * b) = abs a * abs b := or.elim (le.total 0 a) (assume H1 : 0 ≤ a, or.elim (le.total 0 b) (assume H2 : 0 ≤ b, calc abs (a * b) = a * b : abs_of_nonneg (mul_nonneg H1 H2) ... = abs a * b : by rewrite (abs_of_nonneg H1) ... = abs a * abs b : by rewrite (abs_of_nonneg H2)) (assume H2 : b ≤ 0, calc abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonneg_of_nonpos H1 H2) ... = a * -b : by rewrite neg_mul_eq_mul_neg ... = abs a * -b : by rewrite (abs_of_nonneg H1) ... = abs a * abs b : by rewrite (abs_of_nonpos H2))) (assume H1 : a ≤ 0, or.elim (le.total 0 b) (assume H2 : 0 ≤ b, calc abs (a * b) = -(a * b) : abs_of_nonpos (mul_nonpos_of_nonpos_of_nonneg H1 H2) ... = -a * b : by rewrite neg_mul_eq_neg_mul ... = abs a * b : by rewrite (abs_of_nonpos H1) ... = abs a * abs b : by rewrite (abs_of_nonneg H2)) (assume H2 : b ≤ 0, calc abs (a * b) = a * b : abs_of_nonneg (mul_nonneg_of_nonpos_of_nonpos H1 H2) ... = -a * -b : by rewrite neg_mul_neg ... = abs a * -b : by rewrite (abs_of_nonpos H1) ... = abs a * abs b : by rewrite (abs_of_nonpos H2))) theorem abs_mul_self (a : A) : abs a * abs a = a * a := abs.by_cases rfl !neg_mul_neg end /- TODO: Multiplication and one, starting with mult_right_le_one_le. -/ end algebra