/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Andrew Zipperer Functions between subsets of finite types, bundled with the domain and range. -/ import data.set.function open eq.ops namespace set record map {X Y : Type} (a : set X) (b : set Y) := (func : X → Y) (mapsto : maps_to func a b) attribute map.func [coercion] namespace map variables {X Y Z: Type} variables {a : set X} {b : set Y} {c : set Z} /- the equivalence relation -/ protected definition equiv [reducible] (f1 f2 : map a b) : Prop := eq_on f1 f2 a namespace equiv_notation infix `~` := map.equiv end equiv_notation open equiv_notation protected theorem equiv.refl (f : map a b) : f ~ f := take x, assume H, rfl protected theorem equiv.symm {f₁ f₂ : map a b} : f₁ ~ f₂ → f₂ ~ f₁ := assume H : f₁ ~ f₂, take x, assume Ha : x ∈ a, eq.symm (H Ha) protected theorem equiv.trans {f₁ f₂ f₃ : map a b} : f₁ ~ f₂ → f₂ ~ f₃ → f₁ ~ f₃ := assume H₁ : f₁ ~ f₂, assume H₂ : f₂ ~ f₃, take x, assume Ha : x ∈ a, eq.trans (H₁ Ha) (H₂ Ha) protected theorem equiv.is_equivalence {X Y : Type} (a : set X) (b : set Y) : equivalence (@map.equiv X Y a b) := mk_equivalence (@map.equiv X Y a b) (@equiv.refl X Y a b) (@equiv.symm X Y a b) (@equiv.trans X Y a b) /- compose -/ protected definition comp (g : map b c) (f : map a b) : map a c := map.mk (#function g ∘ f) (maps_to_comp (mapsto g) (mapsto f)) notation g ∘ f := map.comp g f /- range -/ protected definition range (f : map a b) : set Y := image f a theorem range_eq_range_of_equiv {f1 f2 : map a b} (H : f1 ~ f2) : map.range f1 = map.range f2 := image_eq_image_of_eq_on H /- injective -/ protected definition injective (f : map a b) : Prop := inj_on f a theorem injective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.injective f1) : map.injective f2 := inj_on_of_eq_on H1 H2 theorem injective_comp {g : map b c} {f : map a b} (Hg : map.injective g) (Hf: map.injective f) : map.injective (g ∘ f) := inj_on_comp (mapsto f) Hg Hf /- surjective -/ protected definition surjective (f : map a b) : Prop := surj_on f a b theorem surjective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.surjective f1) : map.surjective f2 := surj_on_of_eq_on H1 H2 theorem surjective_comp {g : map b c} {f : map a b} (Hg : map.surjective g) (Hf: map.surjective f) : map.surjective (g ∘ f) := surj_on_comp Hg Hf theorem image_eq_of_surjective {f : map a b} (H : map.surjective f) : f ' a = b := image_eq_of_maps_to_of_surj_on (map.mapsto f) H /- bijective -/ protected definition bijective (f : map a b) : Prop := map.injective f ∧ map.surjective f theorem bijective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.bijective f1) : map.bijective f2 := and.intro (injective_of_equiv H1 (and.left H2)) (surjective_of_equiv H1 (and.right H2)) theorem bijective_comp {g : map b c} {f : map a b} (Hg : map.bijective g) (Hf: map.bijective f) : map.bijective (g ∘ f) := obtain Hg₁ Hg₂, from Hg, obtain Hf₁ Hf₂, from Hf, and.intro (injective_comp Hg₁ Hf₁) (surjective_comp Hg₂ Hf₂) theorem image_eq_of_bijective {f : map a b} (H : map.bijective f) : f ' a = b := image_eq_of_surjective (proof and.right H qed) /- left inverse -/ -- g is a left inverse to f protected definition left_inverse (g : map b a) (f : map a b) : Prop := left_inv_on g f a theorem left_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2) (H : map.left_inverse g1 f) : map.left_inverse g2 f := left_inv_on_of_eq_on_left (mapsto f) eqg H theorem left_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2) (H : map.left_inverse g f1) : map.left_inverse g f2 := left_inv_on_of_eq_on_right eqf H theorem injective_of_left_inverse {g : map b a} {f : map a b} (H : map.left_inverse g f) : map.injective f := inj_on_of_left_inv_on H theorem left_inverse_comp {f' : map b a} {g' : map c b} {g : map b c} {f : map a b} (Hf : map.left_inverse f' f) (Hg : map.left_inverse g' g) : map.left_inverse (f' ∘ g') (g ∘ f) := left_inv_on_comp (mapsto f) Hf Hg /- right inverse -/ -- g is a right inverse to f protected definition right_inverse (g : map b a) (f : map a b) : Prop := map.left_inverse f g theorem right_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2) (H : map.right_inverse g1 f) : map.right_inverse g2 f := map.left_inverse_of_equiv_right eqg H theorem right_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2) (H : map.right_inverse g f1) : map.right_inverse g f2 := map.left_inverse_of_equiv_left eqf H theorem right_inverse_of_injective_of_left_inverse {f : map a b} {g : map b a} (injf : map.injective f) (lfg : map.left_inverse f g) : map.right_inverse f g := right_inv_on_of_inj_on_of_left_inv_on (mapsto f) (mapsto g) injf lfg theorem surjective_of_right_inverse {g : map b a} {f : map a b} (H : map.right_inverse g f) : map.surjective f := surj_on_of_right_inv_on (mapsto g) H theorem left_inverse_of_surjective_of_right_inverse {f : map a b} {g : map b a} (surjf : map.surjective f) (rfg : map.right_inverse f g) : map.left_inverse f g := left_inv_on_of_surj_on_right_inv_on surjf rfg theorem right_inverse_comp {f' : map b a} {g' : map c b} {g : map b c} {f : map a b} (Hf : map.right_inverse f' f) (Hg : map.right_inverse g' g) : map.right_inverse (f' ∘ g') (g ∘ f) := map.left_inverse_comp Hg Hf theorem equiv_of_map.left_inverse_of_right_inverse {g1 g2 : map b a} {f : map a b} (H1 : map.left_inverse g1 f) (H2 : map.right_inverse g2 f) : g1 ~ g2 := eq_on_of_left_inv_of_right_inv (mapsto g2) H1 H2 /- inverse -/ -- g is an inverse to f protected definition is_inverse (g : map b a) (f : map a b) : Prop := map.left_inverse g f ∧ map.right_inverse g f theorem bijective_of_is_inverse {g : map b a} {f : map a b} (H : map.is_inverse g f) : map.bijective f := and.intro (injective_of_left_inverse (and.left H)) (surjective_of_right_inverse (and.right H)) end map end set