/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the circle -/ import .sphere types.bool types.eq types.int.hott types.arrow types.equiv algebra.fundamental_group algebra.hott open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc definition circle : Type₀ := sphere 1 namespace circle notation `S¹` := circle definition base1 : circle := !north definition base2 : circle := !south definition seg1 : base1 = base2 := merid !north definition seg2 : base1 = base2 := merid !south definition base : circle := base1 definition loop : base = base := seg1 ⬝ seg2⁻¹ definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) (x : circle) : P x := begin induction x with b, { exact Pb1}, { exact Pb2}, { esimp at *, induction b with y, { exact Ps1}, { exact Ps2}, { cases y}}, end definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := !rec_merid theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := !rec_merid definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P := rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P := elim2 Pb1 Pb2 Ps1 Ps2 x theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := begin apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1], end theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := begin apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base1))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2], end definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type := elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : Type := elim2_type Pb1 Pb2 Ps1 Ps2 x theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) : transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) (x : circle) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply idp}, { apply tr_eq_of_eq_inv_tr, exact (Ploop⁻¹ ⬝ !con_tr)}, end --rewrite -tr_con, exact Ploop⁻¹ protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) : P x := circle.rec Pbase Ploop x theorem rec_loop_helper {A : Type} (P : A → Type) {x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▸ v) : eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q := by cases p; exact idp definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p := eq.rec_on p idp theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) : apd (circle.rec Pbase Ploop) loop = Ploop := begin rewrite [↑loop,apd_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp, rewrite [rec_loop_helper,inv_con_inv_left], apply con_inv_cancel_left end protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : circle) : P := circle.rec Pbase (tr_constant loop Pbase ⬝ Ploop) x protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase) : P := circle.elim Pbase Ploop x theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (circle.elim Pbase Ploop) loop = Ploop := begin apply (@cancel_left _ _ _ _ (tr_constant loop (circle.elim Pbase Ploop base))), rewrite [-apd_eq_tr_constant_con_ap,↑circle.elim,rec_loop], end protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : circle) : Type := circle.elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : circle) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := circle.elim_type Pbase Ploop x theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop = Ploop := by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,circle.elim_loop];apply cast_ua_fn theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop := by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop end circle attribute circle.base1 circle.base2 circle.base [constructor] attribute circle.rec2 circle.elim2 [unfold-c 6] [recursor 6] attribute circle.elim2_type [unfold-c 5] attribute circle.rec2_on circle.elim2_on [unfold-c 2] attribute circle.elim2_type [unfold-c 1] attribute circle.elim circle.rec [unfold-c 4] [recursor 4] attribute circle.elim_type [unfold-c 3] attribute circle.rec_on circle.elim_on [unfold-c 2] attribute circle.elim_type_on [unfold-c 1] namespace circle definition pointed_circle [instance] [constructor] : pointed circle := pointed.mk base definition loop_neq_idp : loop ≠ idp := assume H : loop = idp, have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp, from λA a p, calc p = ap (circle.elim a p) loop : elim_loop ... = ap (circle.elim a p) (refl base) : by rewrite H, absurd !H2 eq_bnot_ne_idp definition nonidp (x : circle) : x = x := circle.rec_on x loop (calc loop ▸ loop = loop⁻¹ ⬝ loop ⬝ loop : transport_eq_lr ... = loop : by rewrite [con.left_inv, idp_con]) definition nonidp_neq_idp : nonidp ≠ (λx, idp) := assume H : nonidp = λx, idp, have H2 : loop = idp, from apd10 H base, absurd H2 loop_neq_idp open int protected definition code (x : circle) : Type₀ := circle.elim_type_on x ℤ equiv_succ definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a := ap10 !elim_type_loop a definition transport_code_loop_inv (a : ℤ) : transport circle.code loop⁻¹ a = pred a := ap10 !elim_type_loop_inv a protected definition encode {x : circle} (p : base = x) : circle.code x := transport circle.code p (of_num 0) -- why is the explicit coercion needed here? protected definition decode {x : circle} : circle.code x → base = x := begin induction x, { exact power loop}, { apply eq_of_homotopy, intro a, refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _, rewrite [transport_code_loop_inv,power_con,succ_pred]} end --remove this theorem after #484 theorem encode_decode {x : circle} : Π(a : circle.code x), circle.encode (circle.decode a) = a := begin unfold circle.decode, induction x, { intro a, esimp [base,base1], --simplify after #587 apply rec_nat_on a, { exact idp}, { intros n p, apply transport (λ(y : base = base), transport circle.code y _ = _), apply power_con, rewrite [▸*,con_tr, transport_code_loop, ↑[circle.encode,circle.code] at p, p]}, { intros n p, apply transport (λ(y : base = base), transport circle.code y _ = _), { exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹}, rewrite [▸*,@con_tr _ circle.code,transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ]}}, { apply eq_of_homotopy, intro a, apply @is_hset.elim, esimp [circle.code,base,base1], exact _} --simplify after #587 end definition circle_eq_equiv (x : circle) : (base = x) ≃ circle.code x := begin fapply equiv.MK, { exact circle.encode}, { exact circle.decode}, { exact circle.encode_decode}, { intro p, cases p, exact idp}, end definition base_eq_base_equiv : base = base ≃ ℤ := circle_eq_equiv base definition decode_add (a b : ℤ) : base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) := !power_con_power definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q := preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q --the carrier of π₁(S¹) is the set-truncation of base = base. open core algebra trunc equiv.ops definition fg_carrier_equiv_int : π₁(S¹) ≃ ℤ := trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ definition fundamental_group_of_circle : π₁(S¹) = group_integers := begin apply (Group_eq fg_carrier_equiv_int), intros g h, apply trunc.rec_on g, intro g', apply trunc.rec_on h, intro h', -- esimp at *, -- esimp [fg_carrier_equiv_int,equiv.trans,equiv.symm,equiv_trunc,trunc_equiv_trunc, -- base_eq_base_equiv,circle_eq_equiv,is_equiv_tr,semigroup.to_has_mul,monoid.to_semigroup, -- group.to_monoid,fundamental_group.mul], apply encode_con, end end circle