import logic open decidable open eq namespace experiment inductive nat : Type := zero : nat, succ : nat → nat definition refl := @eq.refl namespace nat definition pred (n : nat) := nat.rec zero (fun m x, m) n theorem pred_zero : pred zero = zero := refl _ theorem pred_succ (n : nat) : pred (succ n) = n := refl _ theorem zero_or_succ (n : nat) : n = zero ∨ n = succ (pred n) := nat.induction_on n (or.intro_left _ (refl zero)) (take m IH, or.intro_right _ (show succ m = succ (pred (succ m)), from congr_arg succ (symm (pred_succ m)))) theorem zero_or_succ2 (n : nat) : n = zero ∨ n = succ (pred n) := @nat.induction_on _ n (or.intro_left _ (refl zero)) (take m IH, or.intro_right _ (show succ m = succ (pred (succ m)), from congr_arg succ (symm (pred_succ m)))) end nat end experiment