/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Haitao Zhang -/ import data algebra.group data open function eq.ops open set namespace coset -- semigroup coset definition section variable {A : Type} variable [s : semigroup A] include s definition lmul (a : A) := λ x, a * x definition rmul (a : A) := λ x, x * a definition l a (S : set A) := (lmul a) ' S definition r a (S : set A) := (rmul a) ' S lemma lmul_compose : ∀ (a b : A), (lmul a) ∘ (lmul b) = lmul (a*b) := take a, take b, funext (assume x, by rewrite [↑function.compose, ↑lmul, mul.assoc]) lemma rmul_compose : ∀ (a b : A), (rmul a) ∘ (rmul b) = rmul (b*a) := take a, take b, funext (assume x, by rewrite [↑function.compose, ↑rmul, mul.assoc]) lemma lcompose a b (S : set A) : l a (l b S) = l (a*b) S := calc (lmul a) ' ((lmul b) ' S) = ((lmul a) ∘ (lmul b)) ' S : image_compose ... = lmul (a*b) ' S : lmul_compose lemma rcompose a b (S : set A) : r a (r b S) = r (b*a) S := calc (rmul a) ' ((rmul b) ' S) = ((rmul a) ∘ (rmul b)) ' S : image_compose ... = rmul (b*a) ' S : rmul_compose lemma l_sub a (S H : set A) : S ⊆ H → (l a S) ⊆ (l a H) := image_subset (lmul a) definition l_same S (a b : A) := l a S = l b S definition r_same S (a b : A) := r a S = r b S lemma l_same.refl S (a : A) : l_same S a a := rfl lemma l_same.symm S (a b : A) : l_same S a b → l_same S b a := eq.symm lemma l_same.trans S (a b c : A) : l_same S a b → l_same S b c → l_same S a c := eq.trans example (S : set A) : equivalence (l_same S) := mk_equivalence (l_same S) (l_same.refl S) (l_same.symm S) (l_same.trans S) end end coset section variable {A : Type} variable [s : group A] include s definition lmul_by (a : A) := λ x, a * x definition rmul_by (a : A) := λ x, x * a definition glcoset a (H : set A) : set A := λ x, H (a⁻¹ * x) definition grcoset H (a : A) : set A := λ x, H (x * a⁻¹) end namespace group_theory namespace ops infixr `∘>`:55 := glcoset -- stronger than = (50), weaker than * (70) infixl `<∘`:55 := grcoset infixr `∘c`:55 := conj_by end ops end group_theory open group_theory.ops section variable {A : Type} variable [s : group A] include s lemma conj_inj (g : A) : injective (conj_by g) := injective_of_has_left_inverse (exists.intro (conj_by g⁻¹) take a, !conj_inv_cancel) lemma lmul_inj (a : A) : injective (lmul_by a) := take x₁ x₂ Peq, by esimp [lmul_by] at Peq; rewrite [-(inv_mul_cancel_left a x₁), -(inv_mul_cancel_left a x₂), Peq] lemma lmul_inv_on (a : A) (H : set A) : left_inv_on (lmul_by a⁻¹) (lmul_by a) H := take x Px, show a⁻¹*(a*x) = x, by rewrite inv_mul_cancel_left lemma lmul_inj_on (a : A) (H : set A) : inj_on (lmul_by a) H := inj_on_of_left_inv_on (lmul_inv_on a H) lemma glcoset_eq_lcoset a (H : set A) : a ∘> H = coset.l a H := ext begin intro x, rewrite [↑glcoset, ↑coset.l, ↑image, ↑set_of, ↑mem, ↑coset.lmul], apply iff.intro, intro P1, apply (exists.intro (a⁻¹ * x)), apply and.intro, exact P1, exact (mul_inv_cancel_left a x), show (∃ (x_1 : A), H x_1 ∧ a * x_1 = x) → H (a⁻¹ * x), from assume P2, obtain x_1 P3, from P2, have P4 : a * x_1 = x, from and.right P3, have P5 : x_1 = a⁻¹ * x, from eq_inv_mul_of_mul_eq P4, eq.subst P5 (and.left P3) end lemma grcoset_eq_rcoset a (H : set A) : H <∘ a = coset.r a H := begin rewrite [↑grcoset, ↑coset.r, ↑image, ↑coset.rmul, ↑set_of], apply ext, rewrite ↑mem, intro x, apply iff.intro, show H (x * a⁻¹) → (∃ (x_1 : A), H x_1 ∧ x_1 * a = x), from assume PH, exists.intro (x * a⁻¹) (and.intro PH (inv_mul_cancel_right x a)), show (∃ (x_1 : A), H x_1 ∧ x_1 * a = x) → H (x * a⁻¹), from assume Pex, obtain x_1 Pand, from Pex, eq.subst (eq_mul_inv_of_mul_eq (and.right Pand)) (and.left Pand) end lemma glcoset_sub a (S H : set A) : S ⊆ H → (a ∘> S) ⊆ (a ∘> H) := assume Psub, assert P : _, from coset.l_sub a S H Psub, eq.symm (glcoset_eq_lcoset a S) ▸ eq.symm (glcoset_eq_lcoset a H) ▸ P lemma glcoset_compose (a b : A) (H : set A) : a ∘> b ∘> H = a*b ∘> H := begin rewrite [*glcoset_eq_lcoset], exact (coset.lcompose a b H) end lemma grcoset_compose (a b : A) (H : set A) : H <∘ a <∘ b = H <∘ a*b := begin rewrite [*grcoset_eq_rcoset], exact (coset.rcompose b a H) end lemma glcoset_id (H : set A) : 1 ∘> H = H := funext (assume x, calc (1 ∘> H) x = H (1⁻¹*x) : rfl ... = H (1*x) : {one_inv} ... = H x : {one_mul x}) lemma grcoset_id (H : set A) : H <∘ 1 = H := funext (assume x, calc H (x*1⁻¹) = H (x*1) : {one_inv} ... = H x : {mul_one x}) --lemma glcoset_inv a (H : set A) : a⁻¹ ∘> a ∘> H = H := -- funext (assume x, -- calc glcoset a⁻¹ (glcoset a H) x = H x : {mul_inv_cancel_left a⁻¹ x}) lemma glcoset_inv a (H : set A) : a⁻¹ ∘> a ∘> H = H := calc a⁻¹ ∘> a ∘> H = (a⁻¹*a) ∘> H : glcoset_compose ... = 1 ∘> H : mul.left_inv ... = H : glcoset_id lemma grcoset_inv H (a : A) : (H <∘ a) <∘ a⁻¹ = H := funext (assume x, calc grcoset (grcoset H a) a⁻¹ x = H x : {inv_mul_cancel_right x a⁻¹}) lemma glcoset_cancel a b (H : set A) : (b*a⁻¹) ∘> a ∘> H = b ∘> H := calc (b*a⁻¹) ∘> a ∘> H = b*a⁻¹*a ∘> H : glcoset_compose ... = b ∘> H : {inv_mul_cancel_right b a} lemma grcoset_cancel a b (H : set A) : H <∘ a <∘ a⁻¹*b = H <∘ b := calc H <∘ a <∘ a⁻¹*b = H <∘ a*(a⁻¹*b) : grcoset_compose ... = H <∘ b : {mul_inv_cancel_left a b} -- test how precedence breaks tie: infixr takes hold since its encountered first example a b (H : set A) : a ∘> H <∘ b = a ∘> (H <∘ b) := rfl -- should be true for semigroup as well but irrelevant lemma lcoset_rcoset_assoc a b (H : set A) : a ∘> H <∘ b = (a ∘> H) <∘ b := funext (assume x, begin esimp [glcoset, grcoset], rewrite mul.assoc end) definition mul_closed_on H := ∀ (x y : A), x ∈ H → y ∈ H → x * y ∈ H lemma closed_lcontract a (H : set A) : mul_closed_on H → a ∈ H → a ∘> H ⊆ H := begin rewrite [↑mul_closed_on, ↑glcoset, ↑subset, ↑mem], intro Pclosed, intro PHa, intro x, intro PHainvx, exact (eq.subst (mul_inv_cancel_left a x) (Pclosed a (a⁻¹*x) PHa PHainvx)) end lemma closed_rcontract a (H : set A) : mul_closed_on H → a ∈ H → H <∘ a ⊆ H := assume P1 : mul_closed_on H, assume P2 : H a, begin rewrite ↑subset, intro x, rewrite [↑grcoset, ↑mem], intro P3, exact (eq.subst (inv_mul_cancel_right x a) (P1 (x * a⁻¹) a P3 P2)) end lemma closed_lcontract_set a (H G : set A) : mul_closed_on G → H ⊆ G → a∈G → a∘>H ⊆ G := assume Pclosed, assume PHsubG, assume PainG, assert PaGsubG : a ∘> G ⊆ G, from closed_lcontract a G Pclosed PainG, assert PaHsubaG : a ∘> H ⊆ a ∘> G, from eq.symm (glcoset_eq_lcoset a H) ▸ eq.symm (glcoset_eq_lcoset a G) ▸ (coset.l_sub a H G PHsubG), subset.trans PaHsubaG PaGsubG definition subgroup.has_inv H := ∀ (a : A), a ∈ H → a⁻¹ ∈ H -- two ways to define the same equivalence relatiohship for subgroups definition in_lcoset [reducible] H (a b : A) := a ∈ b ∘> H definition in_rcoset [reducible] H (a b : A) := a ∈ H <∘ b definition same_lcoset [reducible] H (a b : A) := a ∘> H = b ∘> H definition same_rcoset [reducible] H (a b : A) := H <∘ a = H <∘ b definition same_left_right_coset (N : set A) := ∀ x, x ∘> N = N <∘ x structure is_subgroup [class] (H : set A) : Type := (has_one : H 1) (mul_closed : mul_closed_on H) (has_inv : subgroup.has_inv H) structure is_normal_subgroup [class] (N : set A) extends is_subgroup N := (normal : same_left_right_coset N) end section subgroup variable {A : Type} variable [s : group A] include s variable {H : set A} variable [is_subg : is_subgroup H] include is_subg section set_reducible local attribute set [reducible] lemma subg_has_one : H (1 : A) := @is_subgroup.has_one A s H is_subg lemma subg_mul_closed : mul_closed_on H := @is_subgroup.mul_closed A s H is_subg lemma subg_has_inv : subgroup.has_inv H := @is_subgroup.has_inv A s H is_subg lemma subgroup_coset_id : ∀ a, a ∈ H → (a ∘> H = H ∧ H <∘ a = H) := take a, assume PHa : H a, assert Pl : a ∘> H ⊆ H, from closed_lcontract a H subg_mul_closed PHa, assert Pr : H <∘ a ⊆ H, from closed_rcontract a H subg_mul_closed PHa, assert PHainv : H a⁻¹, from subg_has_inv a PHa, and.intro (ext (assume x, begin esimp [glcoset, mem], apply iff.intro, apply Pl, intro PHx, exact (subg_mul_closed a⁻¹ x PHainv PHx) end)) (ext (assume x, begin esimp [grcoset, mem], apply iff.intro, apply Pr, intro PHx, exact (subg_mul_closed x a⁻¹ PHx PHainv) end)) lemma subgroup_lcoset_id : ∀ a, a ∈ H → a ∘> H = H := take a, assume PHa : H a, and.left (subgroup_coset_id a PHa) lemma subgroup_rcoset_id : ∀ a, a ∈ H → H <∘ a = H := take a, assume PHa : H a, and.right (subgroup_coset_id a PHa) lemma subg_in_coset_refl (a : A) : a ∈ a ∘> H ∧ a ∈ H <∘ a := assert PH1 : H 1, from subg_has_one, assert PHinvaa : H (a⁻¹*a), from (eq.symm (mul.left_inv a)) ▸ PH1, assert PHainva : H (a*a⁻¹), from (eq.symm (mul.right_inv a)) ▸ PH1, and.intro PHinvaa PHainva end set_reducible lemma subg_in_lcoset_same_lcoset (a b : A) : in_lcoset H a b → same_lcoset H a b := assume Pa_in_b : H (b⁻¹*a), have Pbinva : b⁻¹*a ∘> H = H, from subgroup_lcoset_id (b⁻¹*a) Pa_in_b, have Pb_binva : b ∘> b⁻¹*a ∘> H = b ∘> H, from Pbinva ▸ rfl, have Pbbinva : b*(b⁻¹*a)∘>H = b∘>H, from glcoset_compose b (b⁻¹*a) H ▸ Pb_binva, mul_inv_cancel_left b a ▸ Pbbinva lemma subg_same_lcoset_in_lcoset (a b : A) : same_lcoset H a b → in_lcoset H a b := assume Psame : a∘>H = b∘>H, assert Pa : a ∈ a∘>H, from and.left (subg_in_coset_refl a), by exact (Psame ▸ Pa) lemma subg_lcoset_same (a b : A) : in_lcoset H a b = (a∘>H = b∘>H) := propext(iff.intro (subg_in_lcoset_same_lcoset a b) (subg_same_lcoset_in_lcoset a b)) lemma subg_rcoset_same (a b : A) : in_rcoset H a b = (H<∘a = H<∘b) := propext(iff.intro (assume Pa_in_b : H (a*b⁻¹), have Pabinv : H<∘a*b⁻¹ = H, from subgroup_rcoset_id (a*b⁻¹) Pa_in_b, have Pabinv_b : H <∘ a*b⁻¹ <∘ b = H <∘ b, from Pabinv ▸ rfl, have Pabinvb : H <∘ a*b⁻¹*b = H <∘ b, from grcoset_compose (a*b⁻¹) b H ▸ Pabinv_b, inv_mul_cancel_right a b ▸ Pabinvb) (assume Psame, assert Pa : a ∈ H<∘a, from and.right (subg_in_coset_refl a), by exact (Psame ▸ Pa))) lemma subg_same_lcoset.refl (a : A) : same_lcoset H a a := rfl lemma subg_same_rcoset.refl (a : A) : same_rcoset H a a := rfl lemma subg_same_lcoset.symm (a b : A) : same_lcoset H a b → same_lcoset H b a := eq.symm lemma subg_same_rcoset.symm (a b : A) : same_rcoset H a b → same_rcoset H b a := eq.symm lemma subg_same_lcoset.trans (a b c : A) : same_lcoset H a b → same_lcoset H b c → same_lcoset H a c := eq.trans lemma subg_same_rcoset.trans (a b c : A) : same_rcoset H a b → same_rcoset H b c → same_rcoset H a c := eq.trans variable {S : set A} lemma subg_lcoset_subset_subg (Psub : S ⊆ H) (a : A) : a ∈ H → a ∘> S ⊆ H := assume Pin, have P : a ∘> S ⊆ a ∘> H, from glcoset_sub a S H Psub, subgroup_lcoset_id a Pin ▸ P end subgroup section normal_subg open quot variable {A : Type} variable [s : group A] include s variable (N : set A) variable [is_nsubg : is_normal_subgroup N] include is_nsubg local notation a `~` b := same_lcoset N a b -- note : does not bind as strong as → lemma nsubg_normal : same_left_right_coset N := @is_normal_subgroup.normal A s N is_nsubg lemma nsubg_same_lcoset_product : ∀ a1 a2 b1 b2, (a1 ~ b1) → (a2 ~ b2) → ((a1*a2) ~ (b1*b2)) := take a1, take a2, take b1, take b2, assume Psame1 : a1 ∘> N = b1 ∘> N, assume Psame2 : a2 ∘> N = b2 ∘> N, calc a1*a2 ∘> N = a1 ∘> a2 ∘> N : glcoset_compose ... = a1 ∘> b2 ∘> N : by rewrite Psame2 ... = a1 ∘> (N <∘ b2) : by rewrite (nsubg_normal N) ... = (a1 ∘> N) <∘ b2 : by rewrite lcoset_rcoset_assoc ... = (b1 ∘> N) <∘ b2 : by rewrite Psame1 ... = N <∘ b1 <∘ b2 : by rewrite (nsubg_normal N) ... = N <∘ (b1*b2) : by rewrite grcoset_compose ... = (b1*b2) ∘> N : by rewrite (nsubg_normal N) example (a b : A) : (a⁻¹ ~ b⁻¹) = (a⁻¹ ∘> N = b⁻¹ ∘> N) := rfl lemma nsubg_same_lcoset_inv : ∀ a b, (a ~ b) → (a⁻¹ ~ b⁻¹) := take a b, assume Psame : a ∘> N = b ∘> N, calc a⁻¹ ∘> N = a⁻¹*b*b⁻¹ ∘> N : by rewrite mul_inv_cancel_right ... = a⁻¹*b ∘> b⁻¹ ∘> N : by rewrite glcoset_compose ... = a⁻¹*b ∘> (N <∘ b⁻¹) : by rewrite nsubg_normal ... = (a⁻¹*b ∘> N) <∘ b⁻¹ : by rewrite lcoset_rcoset_assoc ... = (a⁻¹ ∘> b ∘> N) <∘ b⁻¹ : by rewrite glcoset_compose ... = (a⁻¹ ∘> a ∘> N) <∘ b⁻¹ : by rewrite Psame ... = N <∘ b⁻¹ : by rewrite glcoset_inv ... = b⁻¹ ∘> N : by rewrite nsubg_normal definition nsubg_setoid [instance] : setoid A := setoid.mk (same_lcoset N) (mk_equivalence (same_lcoset N) (subg_same_lcoset.refl) (subg_same_lcoset.symm) (subg_same_lcoset.trans)) definition coset_of : Type := quot (nsubg_setoid N) definition coset_inv_base (a : A) : coset_of N := ⟦a⁻¹⟧ definition coset_product (a b : A) : coset_of N := ⟦a*b⟧ lemma coset_product_well_defined : ∀ a1 a2 b1 b2, (a1 ~ b1) → (a2 ~ b2) → ⟦a1*a2⟧ = ⟦b1*b2⟧ := take a1 a2 b1 b2, assume P1 P2, quot.sound (nsubg_same_lcoset_product N a1 a2 b1 b2 P1 P2) definition coset_mul (aN bN : coset_of N) : coset_of N := quot.lift_on₂ aN bN (coset_product N) (coset_product_well_defined N) lemma coset_inv_well_defined : ∀ a b, (a ~ b) → ⟦a⁻¹⟧ = ⟦b⁻¹⟧ := take a b, assume P, quot.sound (nsubg_same_lcoset_inv N a b P) definition coset_inv (aN : coset_of N) : coset_of N := quot.lift_on aN (coset_inv_base N) (coset_inv_well_defined N) definition coset_one : coset_of N := ⟦1⟧ local infixl `cx`:70 := coset_mul N example (a b c : A) : ⟦a⟧ cx ⟦b*c⟧ = ⟦a*(b*c)⟧ := rfl lemma coset_product_assoc (a b c : A) : ⟦a⟧ cx ⟦b⟧ cx ⟦c⟧ = ⟦a⟧ cx (⟦b⟧ cx ⟦c⟧) := calc ⟦a*b*c⟧ = ⟦a*(b*c)⟧ : {mul.assoc a b c} ... = ⟦a⟧ cx ⟦b*c⟧ : rfl lemma coset_product_left_id (a : A) : ⟦1⟧ cx ⟦a⟧ = ⟦a⟧ := calc ⟦1*a⟧ = ⟦a⟧ : {one_mul a} lemma coset_product_right_id (a : A) : ⟦a⟧ cx ⟦1⟧ = ⟦a⟧ := calc ⟦a*1⟧ = ⟦a⟧ : {mul_one a} lemma coset_product_left_inv (a : A) : ⟦a⁻¹⟧ cx ⟦a⟧ = ⟦1⟧ := calc ⟦a⁻¹*a⟧ = ⟦1⟧ : {mul.left_inv a} lemma coset_mul.assoc (aN bN cN : coset_of N) : aN cx bN cx cN = aN cx (bN cx cN) := quot.ind (λ a, quot.ind (λ b, quot.ind (λ c, coset_product_assoc N a b c) cN) bN) aN lemma coset_mul.one_mul (aN : coset_of N) : coset_one N cx aN = aN := quot.ind (coset_product_left_id N) aN lemma coset_mul.mul_one (aN : coset_of N) : aN cx (coset_one N) = aN := quot.ind (coset_product_right_id N) aN lemma coset_mul.left_inv (aN : coset_of N) : (coset_inv N aN) cx aN = (coset_one N) := quot.ind (coset_product_left_inv N) aN definition mk_quotient_group : group (coset_of N):= group.mk (coset_mul N) (coset_mul.assoc N) (coset_one N) (coset_mul.one_mul N) (coset_mul.mul_one N) (coset_inv N) (coset_mul.left_inv N) end normal_subg namespace group_theory namespace quotient section open quot variable {A : Type} variable [s : group A] include s variable {N : set A} variable [is_nsubg : is_normal_subgroup N] include is_nsubg definition quotient_group [instance] : group (coset_of N) := mk_quotient_group N example (aN : coset_of N) : aN * aN⁻¹ = 1 := mul.right_inv aN definition natural (a : A) : coset_of N := ⟦a⟧ end end quotient end group_theory