/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Ported from Coq HoTT -/ import .equiv open eq is_equiv equiv equiv.ops pointed is_trunc -- structure pequiv (A B : Type*) := -- (to_pmap : A →* B) -- (is_equiv_to_pmap : is_equiv to_pmap) structure pequiv (A B : Type*) extends equiv A B, pmap A B section universe variable u structure ptrunctype (n : trunc_index) extends trunctype.{u} n, Pointed.{u} end namespace pointed variables {A B C : Type*} /- pointed equivalences -/ infix ` ≃* `:25 := pequiv attribute pequiv.to_pmap [coercion] attribute pequiv.to_is_equiv [instance] definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B := pequiv.mk f _ (respect_pt f) definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B := pequiv.mk f _ H definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B := equiv.mk f _ definition to_pinv [constructor] (f : A ≃* B) : B →* A := pmap.mk f⁻¹ (ap f⁻¹ (respect_pt f)⁻¹ ⬝ !left_inv) definition pua {A B : Type*} (f : A ≃* B) : A = B := Pointed_eq (equiv_of_pequiv f) !respect_pt protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A := pequiv_of_pmap !pid !is_equiv_id protected definition pequiv.rfl [constructor] : A ≃* A := pequiv.refl A protected definition pequiv.symm [symm] (f : A ≃* B) : B ≃* A := pequiv_of_pmap (to_pinv f) !is_equiv_inv protected definition pequiv.trans [trans] (f : A ≃* B) (g : B ≃* C) : A ≃* C := pequiv_of_pmap (pcompose g f) !is_equiv_compose postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm infix ` ⬝e* `:75 := pequiv.trans definition pequiv_rect' (f : A ≃* B) (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) := left_inv f a ▸ g (f a) definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B := pequiv_of_pmap (pcast p) !is_equiv_tr definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C := p ⬝e* pequiv_of_eq q definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C := pequiv_of_eq p ⬝e* q definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B := Pointed_eq (equiv_of_pequiv p) !respect_pt definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B := pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end definition loop_space_pequiv [constructor] (p : A ≃* B) : Ω A ≃* Ω B := pequiv_of_pmap (ap1 p) (is_equiv_ap1 p) definition pequiv_eq {p q : A ≃* B} (H : p = q :> (A →* B)) : p = q := begin cases p with f Hf, cases q with g Hg, esimp at *, exact apd011 pequiv_of_pmap H !is_prop.elim end definition loop_space_pequiv_rfl : loop_space_pequiv (@pequiv.refl A) = @pequiv.refl (Ω A) := begin apply pequiv_eq, fapply pmap_eq: esimp, { intro p, exact !idp_con ⬝ !ap_id}, { reflexivity} end infix ` ⬝e*p `:75 := peconcat_eq infix ` ⬝pe* `:75 := eq_peconcat end pointed