/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Yoneda embedding and Yoneda lemma -/ import .curry .constructions.hset .constructions.opposite .adjoint open category eq functor prod.ops is_trunc iso is_equiv equiv category.set nat_trans lift namespace yoneda definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _) ... = _ : by rewrite (assoc f2 f3 f4) definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ cset.{v} := functor.mk (λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2) (λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1)) (λ x, @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right))) (λ x y z g f, eq_of_homotopy (by intros; apply @representable_functor_assoc)) /- These attributes make sure that the fields of the category "set" reduce to the right things However, we don't want to have them globally, because that will unfold the composition g ∘ f in a Category to category.category.comp g f -/ local attribute Category.to.precategory category.to_precategory [constructor] -- should this be defined as "yoneda_embedding Cᵒᵖ"? definition contravariant_yoneda_embedding [reducible] (C : Precategory) : Cᵒᵖ ⇒ cset ^c C := functor_curry !hom_functor definition yoneda_embedding (C : Precategory) : C ⇒ cset ^c Cᵒᵖ := functor_curry (!hom_functor ∘f !functor_prod_flip) notation `ɏ` := yoneda_embedding _ definition yoneda_lemma_hom [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) (x : trunctype.carrier (F c)) : ɏ c ⟹ F := begin fapply nat_trans.mk, { intro c', esimp [yoneda_embedding], intro f, exact F f x}, { intro c' c'' f, esimp [yoneda_embedding], apply eq_of_homotopy, intro f', refine _ ⬝ ap (λy, to_fun_hom F y x) !(@id_left _ C)⁻¹, exact ap10 !(@respect_comp Cᵒᵖ cset)⁻¹ x} end definition yoneda_lemma_equiv [constructor] {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) : hom (ɏ c) F ≃ lift (F c) := begin fapply equiv.MK, { intro η, exact up (η c id)}, { intro x, induction x with x, exact yoneda_lemma_hom c F x}, { exact abstract begin intro x, induction x with x, esimp, apply ap up, exact ap10 !respect_id x end end}, { exact abstract begin intro η, esimp, apply nat_trans_eq, intro c', esimp, apply eq_of_homotopy, intro f, esimp [yoneda_embedding] at f, transitivity (F f ∘ η c) id, reflexivity, rewrite naturality, esimp [yoneda_embedding], rewrite [id_left], apply ap _ !id_left end end}, end definition yoneda_lemma {C : Precategory} (c : C) (F : Cᵒᵖ ⇒ cset) : homset (ɏ c) F ≅ lift_functor (F c) := begin apply iso_of_equiv, esimp, apply yoneda_lemma_equiv, end theorem yoneda_lemma_natural_ob {C : Precategory} (F : Cᵒᵖ ⇒ cset) {c c' : C} (f : c' ⟶ c) (η : ɏ c ⟹ F) : to_fun_hom (lift_functor ∘f F) f (to_hom (yoneda_lemma c F) η) = to_hom (yoneda_lemma c' F) (η ∘n to_fun_hom ɏ f) := begin esimp [yoneda_lemma,yoneda_embedding], apply ap up, transitivity (F f ∘ η c) id, reflexivity, rewrite naturality, esimp [yoneda_embedding], apply ap (η c'), esimp [yoneda_embedding, Opposite], rewrite [+id_left,+id_right], end -- TODO: Investigate what is the bottleneck to type check the next theorem -- attribute yoneda_lemma lift_functor Precategory_hset precategory_hset homset -- yoneda_embedding nat_trans.compose functor_nat_trans_compose [reducible] -- attribute tlift functor.compose [reducible] theorem yoneda_lemma_natural_functor.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ cset) (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : (lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) = proof to_hom (yoneda_lemma c F') (θ ∘n η) qed := by reflexivity -- theorem xx.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set) -- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : -- proof _ qed = -- to_hom (yoneda_lemma c F') (θ ∘n η) := -- by reflexivity -- theorem yy.{u v} {C : Precategory.{u v}} (c : C) (F F' : Cᵒᵖ ⇒ set) -- (θ : F ⟹ F') (η : to_fun_ob ɏ c ⟹ F) : -- (lift_functor.{v u} ∘fn θ) c (to_hom (yoneda_lemma c F) η) = -- proof _ qed := -- by reflexivity definition fully_faithful_yoneda_embedding [instance] (C : Precategory) : fully_faithful (ɏ : C ⇒ cset ^c Cᵒᵖ) := begin intro c c', fapply is_equiv_of_equiv_of_homotopy, { symmetry, transitivity _, apply @equiv_of_iso (homset _ _), rexact yoneda_lemma c (ɏ c'), esimp [yoneda_embedding], exact !equiv_lift⁻¹ᵉ}, { intro f, apply nat_trans_eq, intro c, apply eq_of_homotopy, intro f', esimp [equiv.symm,equiv.trans], esimp [yoneda_lemma,yoneda_embedding,Opposite], rewrite [id_left,id_right]} end definition is_embedding_yoneda_embedding (C : Category) : is_embedding (ɏ : C → Cᵒᵖ ⇒ cset) := begin intro c c', fapply is_equiv_of_equiv_of_homotopy, { exact !eq_equiv_iso ⬝e !iso_equiv_F_iso_F ⬝e !eq_equiv_iso⁻¹ᵉ}, { intro p, induction p, esimp [equiv.trans, equiv.symm], esimp [to_fun_iso], rewrite -eq_of_iso_refl, apply ap eq_of_iso, apply iso_eq, esimp, apply nat_trans_eq, intro c', apply eq_of_homotopy, esimp [yoneda_embedding], intro f, rewrite [category.category.id_left], apply id_right} end definition is_representable {C : Precategory} (F : Cᵒᵖ ⇒ cset) := Σ(c : C), ɏ c ≅ F set_option unifier.max_steps 25000 -- TODO: fix this definition is_hprop_representable {C : Category} (F : Cᵒᵖ ⇒ cset) : is_hprop (is_representable F) := begin fapply is_trunc_equiv_closed, { transitivity (Σc, ɏ c = F), { exact fiber.sigma_char ɏ F}, { apply sigma.sigma_equiv_sigma_id, intro c, apply eq_equiv_iso}}, { apply function.is_hprop_fiber_of_is_embedding, apply is_embedding_yoneda_embedding} end end yoneda