/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura General operations on functions. -/ prelude import init.reserved_notation .types open prod namespace function variables {A B C D E : Type} definition compose [reducible] [unfold-full] (f : B → C) (g : A → B) : A → C := λx, f (g x) definition compose_right [reducible] [unfold-full] (f : B → B → B) (g : A → B) : B → A → B := λ b a, f b (g a) definition compose_left [reducible] [unfold-full] (f : B → B → B) (g : A → B) : A → B → B := λ a b, f (g a) b definition id [reducible] [unfold-full] (a : A) : A := a definition on_fun [reducible] [unfold-full] (f : B → B → C) (g : A → B) : A → A → C := λx y, f (g x) (g y) definition combine [reducible] [unfold-full] (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E := λx y, op (f x y) (g x y) definition const [reducible] [unfold-full] (B : Type) (a : A) : B → A := λx, a definition dcompose [reducible] [unfold-full] {B : A → Type} {C : Π {x : A}, B x → Type} (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) := λx, f (g x) definition flip [reducible] [unfold-full] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y := λy x, f x y definition app [reducible] [unfold-full] {B : A → Type} (f : Πx, B x) (x : A) : B x := f x definition curry [reducible] [unfold-full] : (A × B → C) → A → B → C := λ f a b, f (a, b) definition uncurry [reducible] [unfold 5] : (A → B → C) → (A × B → C) := λ f p, match p with (a, b) := f a b end precedence `∘'`:60 precedence `on`:1 precedence `$`:1 infixr ∘ := compose infixr ∘' := dcompose infixl on := on_fun infixr $ := app notation f ` -[` op `]- ` g := combine f op g end function -- copy reducible annotations to top-level export [reduce-hints] [unfold-hints] function