/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer The category of sets is complete and cocomplete -/ import .colimits ..constructions.set hit.set_quotient open eq functor is_trunc sigma pi sigma.ops trunc set_quotient namespace category local attribute category.to_precategory [unfold 2] definition is_complete_set_cone.{u v w} [constructor] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F := begin fapply cone_obj.mk, { fapply trunctype.mk, { exact Σ(s : Π(i : I), trunctype.carrier (F i)), Π{i j : I} (f : i ⟶ j), F f (s i) = (s j)}, { with_options [elaborator.ignore_instances true] -- TODO: fix ( refine is_trunc_sigma _ _; ( apply is_trunc_pi); ( intro s; refine is_trunc_pi _ _; intro i; refine is_trunc_pi _ _; intro j; refine is_trunc_pi _ _; intro f; apply is_trunc_eq))}}, { fapply nat_trans.mk, { intro i x, esimp at x, exact x.1 i}, { intro i j f, esimp, apply eq_of_homotopy, intro x, esimp at x, induction x with s p, esimp, apply p}} end definition is_complete_set.{u v w} [instance] : is_complete.{(max u v w)+1 (max u v w) v w} set := begin intro I F, fapply has_terminal_object.mk, { exact is_complete_set_cone.{u v w} I F}, { intro c, esimp at *, induction c with X η, induction η with η p, esimp at *, fapply is_contr.mk, { fapply cone_hom.mk, { intro x, esimp at *, fapply sigma.mk, { intro i, exact η i x}, { intro i j f, exact ap10 (p f) x}}, { intro i, reflexivity}}, { esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *, apply eq_of_homotopy, intro x, fapply sigma_eq: esimp, { apply eq_of_homotopy, intro i, exact (ap10 (q i) x)⁻¹}, { with_options [elaborator.ignore_instances true] -- TODO: fix ( refine is_prop.elimo _ _ _; refine is_trunc_pi _ _; intro i; refine is_trunc_pi _ _; intro j; refine is_trunc_pi _ _; intro f; apply is_trunc_eq)}}} end definition is_cocomplete_set_cone_rel.{u v w} [unfold 3 4] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : (Σ(i : I), trunctype.carrier (F i)) → (Σ(i : I), trunctype.carrier (F i)) → Prop.{max u v w} := begin intro v w, induction v with i x, induction w with j y, fapply trunctype.mk, { exact ∃(f : i ⟶ j), to_fun_hom F f y = x}, { exact _} end definition is_cocomplete_set_cone.{u v w} [constructor] (I : Precategory.{v w}) (F : I ⇒ set.{max u v w}ᵒᵖ) : cone_obj F := begin fapply cone_obj.mk, { fapply trunctype.mk, { apply set_quotient (is_cocomplete_set_cone_rel.{u v w} I F)}, { apply is_set_set_quotient}}, { fapply nat_trans.mk, { intro i x, esimp, apply class_of, exact ⟨i, x⟩}, { intro i j f, esimp, apply eq_of_homotopy, intro y, apply eq_of_rel, esimp, exact exists.intro f idp}} end -- TODO: change this after induction tactic for trunc/set_quotient is implemented definition is_cocomplete_set.{u v w} [instance] : is_cocomplete.{(max u v w)+1 (max u v w) v w} set := begin intro I F, fapply has_terminal_object.mk, { exact is_cocomplete_set_cone.{u v w} I F}, { intro c, esimp at *, induction c with X η, induction η with η p, esimp at *, fapply is_contr.mk, { fapply cone_hom.mk, { refine set_quotient.elim _ _, { intro v, induction v with i x, exact η i x}, { intro v w r, induction v with i x, induction w with j y, esimp at *, refine trunc.elim_on r _, clear r, intro u, induction u with f q, exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}}, { intro i, reflexivity}}, { esimp, intro h, induction h with f q, apply cone_hom_eq, esimp at *, apply eq_of_homotopy, refine set_quotient.rec _ _, { intro v, induction v with i x, esimp, exact (ap10 (q i) x)⁻¹}, { intro v w r, apply is_prop.elimo}}}, end end category