/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Floris van Doorn Definition of is_trunc (n-truncatedness) Ported from Coq HoTT. -/ --TODO: can we replace some definitions with a hprop as codomain by theorems? prelude import .logic .equiv .types .pathover open eq nat sigma unit namespace is_trunc /- Truncation levels -/ inductive trunc_index : Type₀ := | minus_two : trunc_index | succ : trunc_index → trunc_index /- notation for trunc_index is -2, -1, 0, 1, ... from 0 and up this comes from a coercion from num to trunc_index (via nat) -/ postfix `.+1`:(max+1) := trunc_index.succ postfix `.+2`:(max+1) := λn, (n .+1 .+1) notation `-2` := trunc_index.minus_two notation `-1` := -2.+1 -- ISSUE: -1 gets printed as -2.+1 export [coercions] nat namespace trunc_index definition add (n m : trunc_index) : trunc_index := trunc_index.rec_on m n (λ k l, l .+1) definition leq (n m : trunc_index) : Type₀ := trunc_index.rec_on n (λm, unit) (λ n p m, trunc_index.rec_on m (λ p, empty) (λ m q p, p m) p) m infix <= := trunc_index.leq infix ≤ := trunc_index.leq end trunc_index infix `+2+`:65 := trunc_index.add namespace trunc_index definition succ_le_succ {n m : trunc_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H definition le_of_succ_le_succ {n m : trunc_index} (H : n.+1 ≤ m.+1) : n ≤ m := H definition minus_two_le (n : trunc_index) : -2 ≤ n := star definition empty_of_succ_le_minus_two {n : trunc_index} (H : n .+1 ≤ -2) : empty := H end trunc_index definition trunc_index.of_nat [coercion] [reducible] (n : nat) : trunc_index := (nat.rec_on n -2 (λ n k, k.+1)).+2 definition sub_two [reducible] (n : nat) : trunc_index := nat.rec_on n -2 (λ n k, k.+1) postfix `.-2`:(max+1) := sub_two /- truncated types -/ /- Just as in Coq HoTT we define an internal version of contractibility and is_trunc, but we only use `is_trunc` and `is_contr` -/ structure contr_internal (A : Type) := (center : A) (center_eq : Π(a : A), center = a) definition is_trunc_internal (n : trunc_index) : Type → Type := trunc_index.rec_on n (λA, contr_internal A) (λn trunc_n A, (Π(x y : A), trunc_n (x = y))) end is_trunc open is_trunc structure is_trunc [class] (n : trunc_index) (A : Type) := (to_internal : is_trunc_internal n A) open nat num is_trunc.trunc_index namespace is_trunc abbreviation is_contr := is_trunc -2 abbreviation is_hprop := is_trunc -1 abbreviation is_hset := is_trunc 0 variables {A B : Type} definition is_trunc_succ_intro (A : Type) (n : trunc_index) [H : ∀x y : A, is_trunc n (x = y)] : is_trunc n.+1 A := is_trunc.mk (λ x y, !is_trunc.to_internal) definition is_trunc_eq [instance] [priority 1200] (n : trunc_index) [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x = y) := is_trunc.mk (is_trunc.to_internal (n.+1) A x y) /- contractibility -/ definition is_contr.mk (center : A) (center_eq : Π(a : A), center = a) : is_contr A := is_trunc.mk (contr_internal.mk center center_eq) definition center (A : Type) [H : is_contr A] : A := contr_internal.center (is_trunc.to_internal -2 A) definition center_eq [H : is_contr A] (a : A) : !center = a := contr_internal.center_eq !is_trunc.to_internal a definition eq_of_is_contr [H : is_contr A] (x y : A) : x = y := (center_eq x)⁻¹ ⬝ (center_eq y) definition hprop_eq_of_is_contr {A : Type} [H : is_contr A] {x y : A} (p q : x = y) : p = q := have K : ∀ (r : x = y), eq_of_is_contr x y = r, from (λ r, eq.rec_on r !con.left_inv), (K p)⁻¹ ⬝ K q theorem is_contr_eq {A : Type} [H : is_contr A] (x y : A) : is_contr (x = y) := is_contr.mk !eq_of_is_contr (λ p, !hprop_eq_of_is_contr) local attribute is_contr_eq [instance] /- truncation is upward close -/ -- n-types are also (n+1)-types theorem is_trunc_succ [instance] [priority 900] (A : Type) (n : trunc_index) [H : is_trunc n A] : is_trunc (n.+1) A := trunc_index.rec_on n (λ A (H : is_contr A), !is_trunc_succ_intro) (λ n IH A (H : is_trunc (n.+1) A), @is_trunc_succ_intro _ _ (λ x y, IH _ _)) A H --in the proof the type of H is given explicitly to make it available for class inference theorem is_trunc_of_leq.{l} (A : Type.{l}) {n m : trunc_index} (Hnm : n ≤ m) [Hn : is_trunc n A] : is_trunc m A := have base : ∀k A, k ≤ -2 → is_trunc k A → (is_trunc -2 A), from λ k A, trunc_index.cases_on k (λh1 h2, h2) (λk h1 h2, empty.elim (trunc_index.empty_of_succ_le_minus_two h1)), have step : Π (m : trunc_index) (IHm : Π (n : trunc_index) (A : Type), n ≤ m → is_trunc n A → is_trunc m A) (n : trunc_index) (A : Type) (Hnm : n ≤ m .+1) (Hn : is_trunc n A), is_trunc m .+1 A, from λm IHm n, trunc_index.rec_on n (λA Hnm Hn, @is_trunc_succ A m (IHm -2 A star Hn)) (λn IHn A Hnm (Hn : is_trunc n.+1 A), @is_trunc_succ_intro A m (λx y, IHm n (x = y) (trunc_index.le_of_succ_le_succ Hnm) _)), trunc_index.rec_on m base step n A Hnm Hn -- the following cannot be instances in their current form, because they are looping theorem is_trunc_of_is_contr (A : Type) (n : trunc_index) [H : is_contr A] : is_trunc n A := trunc_index.rec_on n H _ theorem is_trunc_succ_of_is_hprop (A : Type) (n : trunc_index) [H : is_hprop A] : is_trunc (n.+1) A := is_trunc_of_leq A (star : -1 ≤ n.+1) theorem is_trunc_succ_succ_of_is_hset (A : Type) (n : trunc_index) [H : is_hset A] : is_trunc (n.+2) A := is_trunc_of_leq A (star : 0 ≤ n.+2) /- hprops -/ definition is_hprop.elim [H : is_hprop A] (x y : A) : x = y := !center definition is_contr_of_inhabited_hprop {A : Type} [H : is_hprop A] (x : A) : is_contr A := is_contr.mk x (λy, !is_hprop.elim) theorem is_hprop_of_imp_is_contr {A : Type} (H : A → is_contr A) : is_hprop A := @is_trunc_succ_intro A -2 (λx y, have H2 [visible] : is_contr A, from H x, !is_contr_eq) theorem is_hprop.mk {A : Type} (H : ∀x y : A, x = y) : is_hprop A := is_hprop_of_imp_is_contr (λ x, is_contr.mk x (H x)) theorem is_hprop_elim_self {A : Type} {H : is_hprop A} (x : A) : is_hprop.elim x x = idp := !is_hprop.elim /- hsets -/ theorem is_hset.mk (A : Type) (H : ∀(x y : A) (p q : x = y), p = q) : is_hset A := @is_trunc_succ_intro _ _ (λ x y, is_hprop.mk (H x y)) definition is_hset.elim [H : is_hset A] ⦃x y : A⦄ (p q : x = y) : p = q := !is_hprop.elim /- instances -/ definition is_contr_sigma_eq [instance] [priority 800] {A : Type} (a : A) : is_contr (Σ(x : A), a = x) := is_contr.mk (sigma.mk a idp) (λp, sigma.rec_on p (λ b q, eq.rec_on q idp)) definition is_contr_unit [instance] : is_contr unit := is_contr.mk star (λp, unit.rec_on p idp) definition is_hprop_empty [instance] : is_hprop empty := is_hprop.mk (λx, !empty.elim x) /- truncated universe -/ -- TODO: move to root namespace? structure trunctype (n : trunc_index) := (carrier : Type) (struct : is_trunc n carrier) attribute trunctype.carrier [coercion] attribute trunctype.struct [instance] notation n `-Type` := trunctype n abbreviation hprop := -1-Type abbreviation hset := 0-Type protected abbreviation hprop.mk := @trunctype.mk -1 protected abbreviation hset.mk := @trunctype.mk (-1.+1) protected abbreviation trunctype.mk' [parsing-only] (n : trunc_index) (A : Type) [H : is_trunc n A] : n-Type := trunctype.mk A H /- interaction with equivalences -/ section open is_equiv equiv --should we remove the following two theorems as they are special cases of --"is_trunc_is_equiv_closed" definition is_contr_is_equiv_closed (f : A → B) [Hf : is_equiv f] [HA: is_contr A] : (is_contr B) := is_contr.mk (f (center A)) (λp, eq_of_eq_inv !center_eq) definition is_contr_equiv_closed (H : A ≃ B) [HA: is_contr A] : is_contr B := is_contr_is_equiv_closed (to_fun H) definition equiv_of_is_contr_of_is_contr [HA : is_contr A] [HB : is_contr B] : A ≃ B := equiv.mk (λa, center B) (is_equiv.adjointify (λa, center B) (λb, center A) center_eq center_eq) theorem is_trunc_is_equiv_closed (n : trunc_index) (f : A → B) [H : is_equiv f] [HA : is_trunc n A] : is_trunc n B := trunc_index.rec_on n (λA (HA : is_contr A) B f (H : is_equiv f), is_contr_is_equiv_closed f) (λn IH A (HA : is_trunc n.+1 A) B f (H : is_equiv f), @is_trunc_succ_intro _ _ (λ x y : B, IH (f⁻¹ x = f⁻¹ y) _ (x = y) (ap f⁻¹)⁻¹ !is_equiv_inv)) A HA B f H definition is_trunc_is_equiv_closed_rev (n : trunc_index) (f : A → B) [H : is_equiv f] [HA : is_trunc n B] : is_trunc n A := is_trunc_is_equiv_closed n f⁻¹ definition is_trunc_equiv_closed (n : trunc_index) (f : A ≃ B) [HA : is_trunc n A] : is_trunc n B := is_trunc_is_equiv_closed n (to_fun f) definition is_trunc_equiv_closed_rev (n : trunc_index) (f : A ≃ B) [HA : is_trunc n B] : is_trunc n A := is_trunc_is_equiv_closed n (to_inv f) definition is_equiv_of_is_hprop [constructor] [HA : is_hprop A] [HB : is_hprop B] (f : A → B) (g : B → A) : is_equiv f := is_equiv.mk f g (λb, !is_hprop.elim) (λa, !is_hprop.elim) (λa, !is_hset.elim) definition equiv_of_is_hprop [constructor] [HA : is_hprop A] [HB : is_hprop B] (f : A → B) (g : B → A) : A ≃ B := equiv.mk f (is_equiv_of_is_hprop f g) definition equiv_of_iff_of_is_hprop [unfold-c 5] [HA : is_hprop A] [HB : is_hprop B] (H : A ↔ B) : A ≃ B := equiv_of_is_hprop (iff.elim_left H) (iff.elim_right H) end /- interaction with the Unit type -/ open equiv -- A contractible type is equivalent to [Unit]. *) definition equiv_unit_of_is_contr [H : is_contr A] : A ≃ unit := equiv.MK (λ (x : A), ⋆) (λ (u : unit), center A) (λ (u : unit), unit.rec_on u idp) (λ (x : A), center_eq x) /- interaction with pathovers -/ variables {C : A → Type} {a a₂ : A} (p : a = a₂) (c : C a) (c₂ : C a₂) definition is_hprop.elimo [H : is_hprop (C a)] : c =[p] c₂ := pathover_of_eq_tr !is_hprop.elim definition is_trunc_pathover [instance] (n : trunc_index) [H : is_trunc (n.+1) (C a)] : is_trunc n (c =[p] c₂) := is_trunc_equiv_closed_rev n !pathover_equiv_eq_tr variables {p c c₂} theorem is_hset.elimo (q q' : c =[p] c₂) [H : is_hset (C a)] : q = q' := !is_hprop.elim -- TODO: port "Truncated morphisms" end is_trunc