/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Definition of functors involving at least two different constructions of categories -/ import ..constructions.functor ..constructions.product ..constructions.opposite ..constructions.set open category nat_trans eq prod prod.ops namespace functor section open iso equiv variables {C D E : Precategory} (F F' : C ×c D ⇒ E) (G G' : C ⇒ E ^c D) /- currying a functor -/ definition functor_curry_ob [reducible] [constructor] (c : C) : D ⇒ E := F ∘f (constant_functor D c ×f 1) definition functor_curry_hom [constructor] ⦃c c' : C⦄ (f : c ⟶ c') : functor_curry_ob F c ⟹ functor_curry_ob F c' := F ∘fn (constant_nat_trans D f ×n 1) local abbreviation Fhom [constructor] := @functor_curry_hom theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id := nat_trans_eq (λd, respect_id F _) theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c') : Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f := begin apply @nat_trans_eq, intro d, calc natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by esimp ... = F (f' ∘ f, id ∘ id) : by rewrite id_id ... = F ((f',id) ∘ (f, id)) : by esimp ... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F] ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp end definition functor_curry [reducible] [constructor] : C ⇒ E ^c D := functor.mk (functor_curry_ob F) (functor_curry_hom F) (functor_curry_id F) (functor_curry_comp F) /- uncurrying a functor -/ definition functor_uncurry_ob [reducible] (p : C ×c D) : E := to_fun_ob (G p.1) p.2 definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : functor_uncurry_ob G p ⟶ functor_uncurry_ob G p' := to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2 local abbreviation Ghom := @functor_uncurry_hom theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id := calc Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp ... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id ... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id ... = id : id_id theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p') : Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f := calc Ghom G (f' ∘ f) = to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2) ∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by rewrite [square_prepostcompose (!naturality⁻¹ᵖ) _ _] ... = Ghom G f' ∘ Ghom G f : by esimp definition functor_uncurry [reducible] [constructor] : C ×c D ⇒ E := functor.mk (functor_uncurry_ob G) (functor_uncurry_hom G) (functor_uncurry_id G) (functor_uncurry_comp G) theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F := functor_eq (λp, ap (to_fun_ob F) !prod.eta) begin intro cd cd' fg, cases cd with c d, cases cd' with c' d', cases fg with f g, transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g), apply id_leftright, show (functor_uncurry (functor_curry F)) (f, g) = F (f,g), from calc (functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp ... = F (id ∘ f, g ∘ id) : by krewrite [-respect_comp F (id,g) (f,id)] ... = F (f, g ∘ id) : by rewrite id_left ... = F (f,g) : by rewrite id_right, end definition functor_curry_functor_uncurry_ob (c : C) : functor_curry (functor_uncurry G) c = G c := begin fapply functor_eq, { intro d, reflexivity}, { intro d d' g, refine !id_leftright ⬝ _, esimp, rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]} end theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G := begin fapply functor_eq, exact (functor_curry_functor_uncurry_ob G), intro c c' f, fapply nat_trans_eq, intro d, apply concat, {apply (ap (λx, x ∘ _)), apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq}, apply concat, {apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)), apply concat, apply natural_map_inv_of_eq, apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq}, apply concat, apply id_leftright, apply concat, apply (ap (λx, x ∘ _)), apply respect_id, apply id_left end /- This only states that the carriers of (C ^ D) ^ E and C ^ (E × D) are equivalent. In [exponential laws] we prove that these are in fact isomorphic categories -/ definition prod_functor_equiv_functor_functor [constructor] (C D E : Precategory) : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) := equiv.MK functor_curry functor_uncurry functor_curry_functor_uncurry functor_uncurry_functor_curry variables {F F' G G'} definition nat_trans_curry_nat [constructor] (η : F ⟹ F') (c : C) : functor_curry_ob F c ⟹ functor_curry_ob F' c := begin fapply nat_trans.mk: esimp, { intro d, exact η (c, d)}, { intro d d' f, apply naturality} end definition nat_trans_curry [constructor] (η : F ⟹ F') : functor_curry F ⟹ functor_curry F' := begin fapply nat_trans.mk: esimp, { exact nat_trans_curry_nat η}, { intro c c' f, apply nat_trans_eq, intro d, esimp, apply naturality} end definition nat_trans_uncurry [constructor] (η : G ⟹ G') : functor_uncurry G ⟹ functor_uncurry G' := begin fapply nat_trans.mk: esimp, { intro v, unfold functor_uncurry_ob, exact (η v.1) v.2}, { intro v w f, unfold functor_uncurry_hom, rewrite [-assoc, ap010 natural_map (naturality η f.1) v.2, assoc, naturality, -assoc]} end end section open is_trunc /- hom-functors -/ definition hom_functor_assoc {C : Precategory} {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _) ... = _ : by rewrite (assoc f2 f3 f4) -- the functor hom(-,-) definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} := functor.mk (λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2) (λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1)) (λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right)) end) (λ x y z g f, abstract eq_of_homotopy (by intros; apply @hom_functor_assoc) end) -- the functor hom(-, c) definition hom_functor_left.{u v} [constructor] (C : Precategory.{u v}) (c : C) : Cᵒᵖ ⇒ set.{v} := hom_functor C ∘f (1 ×f constant_functor Cᵒᵖ c) -- the functor hom(c, -) definition hom_functor_right.{u v} [constructor] (C : Precategory.{u v}) (c : C) : C ⇒ set.{v} := hom_functor C ∘f (constant_functor C c ×f 1) end end functor