-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Jakob von Raumer -- Ported from Coq HoTT import .path .trunc open path function -- Equivalences -- ------------ definition Sect {A B : Type} (s : A → B) (r : B → A) := Πx : A, r (s x) ≈ x -- -- TODO: need better means of declaring structures -- -- TODO: note that Coq allows projections to be declared to be coercions on the fly -- Structure IsEquiv inductive IsEquiv [class] {A B : Type} (f : A → B) := IsEquiv_mk : Π (inv : B → A) (retr : Sect inv f) (sect : Sect f inv) (adj : Πx, retr (f x) ≈ ap f (sect x)), IsEquiv f namespace IsEquiv definition inv {A B : Type} {f : A → B} (H : IsEquiv f) : B → A := IsEquiv.rec (λinv retr sect adj, inv) H -- TODO: note: does not type check without giving the type definition retr {A B : Type} {f : A → B} (H : IsEquiv f) : Sect (inv H) f := IsEquiv.rec (λinv retr sect adj, retr) H definition sect {A B : Type} {f : A → B} (H : IsEquiv f) : Sect f (inv H) := IsEquiv.rec (λinv retr sect adj, sect) H definition adj {A B : Type} {f : A → B} (H : IsEquiv f) : Πx, retr H (f x) ≈ ap f (sect H x) := IsEquiv.rec (λinv retr sect adj, adj) H end IsEquiv -- Structure Equiv inductive Equiv (A B : Type) : Type := Equiv_mk : Π (equiv_fun : A → B) (equiv_isequiv : IsEquiv equiv_fun), Equiv A B namespace Equiv definition equiv_fun [coercion] {A B : Type} (e : Equiv A B) : A → B := Equiv.rec (λequiv_fun equiv_isequiv, equiv_fun) e definition equiv_isequiv [coercion] {A B : Type} (e : Equiv A B) : IsEquiv (equiv_fun e) := Equiv.rec (λequiv_fun equiv_isequiv, equiv_isequiv) e infix `≃`:25 := Equiv notation e `⁻¹` := IsEquiv.inv e end Equiv -- Some instances and closure properties of equivalences namespace IsEquiv variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B} -- The identity function is an equivalence. definition id_closed [instance] : (@IsEquiv A A id) := IsEquiv_mk id (λa, idp) (λa, idp) (λa, idp) -- The composition of two equivalences is, again, an equivalence. definition comp_closed [instance] (Hf : IsEquiv f) (Hg : IsEquiv g) : (IsEquiv (g ∘ f)) := IsEquiv_mk ((inv Hf) ∘ (inv Hg)) (λc, ap g (retr Hf ((inv Hg) c)) ⬝ retr Hg c) (λa, ap (inv Hf) (sect Hg (f a)) ⬝ sect Hf a) (λa, (whiskerL _ (adj Hg (f a))) ⬝ (ap_pp g _ _)⁻¹ ⬝ ap02 g (concat_A1p (retr Hf) (sect Hg (f a))⁻¹ ⬝ (ap_compose (inv Hf) f _ ◾ adj Hf a) ⬝ (ap_pp f _ _)⁻¹ ) ⬝ (ap_compose f g _)⁻¹ ) -- Any function equal to an equivalence is an equivlance as well. definition path_closed (Hf : IsEquiv f) (Heq : f ≈ f') : (IsEquiv f') := path.rec_on Heq Hf -- Any function pointwise equal to an equivalence is an equivalence as well. definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') := let sect' := (λ b, (Heq (inv Hf b))⁻¹ ⬝ retr Hf b) in let retr' := (λ a, (ap (inv Hf) (Heq a))⁻¹ ⬝ sect Hf a) in let adj' := (λ (a : A), let ff'a := Heq a in let invf := inv Hf in let secta := sect Hf a in let retrfa := retr Hf (f a) in let retrf'a := retr Hf (f' a) in have eq1 : _ ≈ _, from calc ap f secta ⬝ ff'a ≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹ ... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹ ... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f _}, have eq2 : _ ≈ _, from calc retrf'a ≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹) ... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (ap f secta ⬝ Heq a) : {ap_V invf ff'a} ... ≈ ap f (ap invf ff'a)⁻¹ ⬝ (Heq (invf (f a)) ⬝ ap f' secta) : {!concat_Ap} ... ≈ (ap f (ap invf ff'a)⁻¹ ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!concat_pp_p⁻¹} ... ≈ (ap f ((ap invf ff'a)⁻¹) ⬝ Heq (invf (f a))) ⬝ ap f' secta : {!ap_V⁻¹} ... ≈ (Heq (invf (f' a)) ⬝ ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!concat_Ap} ... ≈ (Heq (invf (f' a)) ⬝ (ap f' (ap invf ff'a))⁻¹) ⬝ ap f' secta : {!ap_V} ... ≈ Heq (invf (f' a)) ⬝ ((ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta) : !concat_pp_p, have eq3 : _ ≈ _, from calc (Heq (invf (f' a)))⁻¹ ⬝ retr Hf (f' a) ≈ (ap f' (ap invf ff'a))⁻¹ ⬝ ap f' secta : moveR_Vp _ _ _ eq2 ... ≈ (ap f' ((ap invf ff'a)⁻¹)) ⬝ ap f' secta : {!ap_V⁻¹} ... ≈ ap f' ((ap invf ff'a)⁻¹ ⬝ secta) : !ap_pp⁻¹, eq3) in IsEquiv_mk (inv Hf) sect' retr' adj' end IsEquiv namespace IsEquiv variables {A B : Type} (f : A → B) (g : B → A) (retr : Sect g f) (sect : Sect f g) context set_option unifier.max_steps 30000 --To construct an equivalence it suffices to state the proof that the inverse is a quasi-inverse. definition adjointify : IsEquiv f := let sect' := (λx, ap g (ap f ((sect x)⁻¹)) ⬝ ap g (retr (f x)) ⬝ sect x) in let adj' := (λ (a : A), let fgretrfa := ap f (ap g (retr (f a))) in let fgfinvsect := ap f (ap g (ap f ((sect a)⁻¹))) in let fgfa := f (g (f a)) in let retrfa := retr (f a) in have eq1 : ap f (sect a) ≈ _, from calc ap f (sect a) ≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹ ... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹} ... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹} ... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _} ... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p, have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)), from !concat_p1 ▹ eq1, have eq3 : idp ≈ _, from calc idp ≈ (ap f (sect a))⁻¹ ⬝ ((retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a))) : moveL_Vp _ _ _ eq2 ... ≈ (ap f (sect a)⁻¹ ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_p_pp ... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹} ... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp ... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹} ... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _} ... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹} ... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹} ... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹ ... ≈ retrfa⁻¹ ⬝ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a) : {!ap_pp⁻¹}, have eq4 : retr (f a) ≈ ap f ((ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ sect a), from moveR_M1 _ _ eq3, eq4) in IsEquiv_mk g retr sect' adj' end end IsEquiv namespace IsEquiv variables {A B: Type} {f : A → B} (Hf : IsEquiv f) --The inverse of an equivalence is, again, an equivalence. definition inv_closed : (IsEquiv (inv Hf)) := adjointify (inv Hf) f (sect Hf) (retr Hf) end IsEquiv namespace IsEquiv variables {A B C : Type} {f : A → B} {g : B → C} {f' : A → B} definition cancel_R (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv g) := homotopic (comp_closed (inv_closed Hf) Hgf) (λb, ap g (retr Hf b)) definition cancel_L (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : (IsEquiv f) := homotopic (comp_closed Hgf (inv_closed Hg)) (λa, sect Hg (f a)) --Transporting is an equivalence definition transport [instance] (P : A → Type) {x y : A} (p : x ≈ y) : (IsEquiv (transport P p)) := IsEquiv_mk (transport P (p⁻¹)) (transport_pV P p) (transport_Vp P p) (transport_pVp P p) --Rewrite rules section variables {Hf : IsEquiv f} definition moveR_M {x : A} {y : B} (p : x ≈ (inv Hf) y) : (f x ≈ y) := (ap f p) ⬝ (retr Hf y) definition moveL_M {x : A} {y : B} (p : (inv Hf) y ≈ x) : (y ≈ f x) := (moveR_M (p⁻¹))⁻¹ definition moveR_V {x : B} {y : A} (p : x ≈ f y) : (inv Hf) x ≈ y := ap (inv Hf) p ⬝ sect Hf y definition moveL_V {x : B} {y : A} (p : f y ≈ x) : y ≈ (inv Hf) x := (moveR_V (p⁻¹))⁻¹ definition contr (HA: Contr A) : (Contr B) := Contr.Contr_mk (f (center HA)) (λb, moveR_M (contr HA (inv Hf b))) end --If pre- or post-composing with a function is always an equivalence, --then that function is also an equivalence. It's convenient to know --that we only need to assume the equivalence when the other type is --the domain or the codomain. section definition precomp (C : Type) (h : B → C) : A → C := h ∘ f definition inv_precomp (C D : Type) (Ceq : IsEquiv (precomp C)) (Deq : IsEquiv (@precomp A B f D)) (k : C → D) (h : A → C) : k ∘ (inv Ceq) h ≈ (inv Deq) (k ∘ h) := have eq1 : (inv Deq) (k ∘ h) ≈ k ∘ ((inv Ceq) h), from calc (inv Deq) (k ∘ h) ≈ (inv Deq) (k ∘ (precomp C ((inv Ceq) h))) : retr Ceq h ... ≈ k ∘ ((inv Ceq) h) : !sect, eq1⁻¹ definition isequiv_precompose (Aeq : IsEquiv (@precomp A B f A)) (Beq : IsEquiv (@precomp A B f B)) : (IsEquiv f) := let sect' : Sect ((inv Aeq) id) f := (λx, calc f (inv Aeq id x) ≈ (f ∘ (inv Aeq) id) x : idp ... ≈ (inv Beq) (f ∘ id) x : apD10 (!inv_precomp) ... ≈ (inv Beq) (@precomp A B f B id) x : idp ... ≈ x : apD10 (sect Beq id)) in let retr' : Sect f ((inv Aeq) id) := (λx, calc inv Aeq id (f x) ≈ @precomp A B f A ((inv Aeq) id) x : idp ... ≈ x : apD10 (retr Aeq id)) in adjointify f ((inv Aeq) id) sect' retr' end end IsEquiv namespace Equiv variables {A B C : Type} (eqf : A ≃ B) definition id : A ≃ A := Equiv_mk id IsEquiv.id_closed theorem compose (eqg: B ≃ C) : A ≃ C := Equiv_mk ((equiv_fun eqg) ∘ (equiv_fun eqf)) (IsEquiv.comp_closed (equiv_isequiv eqf) (equiv_isequiv eqg)) theorem path_closed (f' : A → B) (Heq : equiv_fun eqf ≈ f') : A ≃ B := Equiv_mk f' (IsEquiv.path_closed (equiv_isequiv eqf) Heq) theorem inv_closed : B ≃ A := Equiv_mk (IsEquiv.inv (equiv_isequiv eqf)) (IsEquiv.inv_closed (equiv_isequiv eqf)) theorem cancel_L {f : A → B} {g : B → C} (Hf : IsEquiv f) (Hgf : IsEquiv (g ∘ f)) : B ≃ C := Equiv_mk g (IsEquiv.cancel_R _ _) theorem cancel_R {f : A → B} {g : B → C} (Hg : IsEquiv g) (Hgf : IsEquiv (g ∘ f)) : A ≃ B := Equiv_mk f (!IsEquiv.cancel_L _ _) theorem transport (P : A → Type) {x y : A} {p : x ≈ y} : (P x) ≃ (P y) := Equiv_mk (transport P p) (IsEquiv.transport P p) theorem contr_closed (HA: Contr A) : (Contr B) := @IsEquiv.contr A B (equiv_fun eqf) (equiv_isequiv eqf) HA end Equiv namespace Equiv variables {A B : Type} {HA : Contr A} {HB : Contr B} --Each two contractible types are equivalent. definition contr_contr : A ≃ B := Equiv_mk (λa, center HB) (IsEquiv.adjointify (λa, center HB) (λb, center HA) (contr HB) (contr HA)) end Equiv