-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.connectives.basic logic.connectives.eq logic.classes.inhabited logic.classes.decidable using eq_ops decidable namespace option inductive option (A : Type) : Type := none {} : option A, some : A → option A theorem induction_on {A : Type} {p : option A → Prop} (o : option A) (H1 : p none) (H2 : ∀a, p (some a)) : p o := option_rec H1 H2 o definition rec_on {A : Type} {C : option A → Type} (o : option A) (H1 : C none) (H2 : ∀a, C (some a)) : C o := option_rec H1 H2 o definition is_none {A : Type} (o : option A) : Prop := option_rec true (λ a, false) o theorem is_none_none {A : Type} : is_none (@none A) := trivial theorem not_is_none_some {A : Type} (a : A) : ¬ is_none (some a) := not_false_trivial theorem none_ne_some {A : Type} (a : A) : none ≠ some a := assume H : none = some a, absurd (H ▸ is_none_none) (not_is_none_some a) theorem some_inj {A : Type} {a₁ a₂ : A} (H : some a₁ = some a₂) : a₁ = a₂ := congr_arg (option_rec a₁ (λ a, a)) H theorem option_inhabited [instance] (A : Type) : inhabited (option A) := inhabited_mk none theorem decidable_eq [instance] {A : Type} {H : ∀a₁ a₂ : A, decidable (a₁ = a₂)} (o₁ o₂ : option A) : decidable (o₁ = o₂) := rec_on o₁ (rec_on o₂ (inl (refl _)) (take a₂, (inr (none_ne_some a₂)))) (take a₁ : A, rec_on o₂ (inr (ne_symm (none_ne_some a₁))) (take a₂ : A, decidable.rec_on (H a₁ a₂) (assume Heq : a₁ = a₂, inl (Heq ▸ refl _)) (assume Hne : a₁ ≠ a₂, inr (assume Hn : some a₁ = some a₂, absurd (some_inj Hn) Hne)))) end option