/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about 2-dimensional paths -/ import .cubical.square open function namespace eq variables {A B C : Type} {f : A → B} {a a' a₁ a₂ a₃ a₄ : A} {b b' : B} theorem ap_is_constant_eq (p : Πx, f x = b) (q : a = a') : ap_is_constant p q = eq_con_inv_of_con_eq ((eq_of_square (square_of_pathover (apd p q)))⁻¹ ⬝ whisker_left (p a) (ap_constant q b)) := begin induction q, esimp, generalize (p a), intro p, cases p, apply idpath idp end definition ap_inv2 {p q : a = a'} (r : p = q) : square (ap (ap f) (inverse2 r)) (inverse2 (ap (ap f) r)) (ap_inv f p) (ap_inv f q) := by induction r;exact hrfl definition ap_con2 {p₁ q₁ : a₁ = a₂} {p₂ q₂ : a₂ = a₃} (r₁ : p₁ = q₁) (r₂ : p₂ = q₂) : square (ap (ap f) (r₁ ◾ r₂)) (ap (ap f) r₁ ◾ ap (ap f) r₂) (ap_con f p₁ p₂) (ap_con f q₁ q₂) := by induction r₂;induction r₁;exact hrfl theorem ap_con_right_inv_sq {A B : Type} {a1 a2 : A} (f : A → B) (p : a1 = a2) : square (ap (ap f) (con.right_inv p)) (con.right_inv (ap f p)) (ap_con f p p⁻¹ ⬝ whisker_left _ (ap_inv f p)) idp := by cases p;apply hrefl theorem ap_con_left_inv_sq {A B : Type} {a1 a2 : A} (f : A → B) (p : a1 = a2) : square (ap (ap f) (con.left_inv p)) (con.left_inv (ap f p)) (ap_con f p⁻¹ p ⬝ whisker_right (ap_inv f p) _) idp := by cases p;apply vrefl theorem ap_ap_is_constant {A B C : Type} (g : B → C) {f : A → B} {b : B} (p : Πx, f x = b) {x y : A} (q : x = y) : square (ap (ap g) (ap_is_constant p q)) (ap_is_constant (λa, ap g (p a)) q) (ap_compose g f q)⁻¹ (!ap_con ⬝ whisker_left _ !ap_inv) := begin induction q, esimp, generalize (p x), intro p, cases p, apply ids -- induction q, rewrite [↑ap_compose,ap_inv], apply hinverse, apply ap_con_right_inv_sq, end theorem ap_ap_compose {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) {x y : A} (p : x = y) : square (ap_compose (h ∘ g) f p) (ap (ap h) (ap_compose g f p)) (ap_compose h (g ∘ f) p) (ap_compose h g (ap f p)) := by induction p;exact ids theorem ap_compose_inv {A B C : Type} (g : B → C) (f : A → B) {x y : A} (p : x = y) : square (ap_compose g f p⁻¹) (inverse2 (ap_compose g f p) ⬝ (ap_inv g (ap f p))⁻¹) (ap_inv (g ∘ f) p) (ap (ap g) (ap_inv f p)) := by induction p;exact ids theorem ap_compose_con (g : B → C) (f : A → B) (p : a₁ = a₂) (q : a₂ = a₃) : square (ap_compose g f (p ⬝ q)) (ap_compose g f p ◾ ap_compose g f q ⬝ (ap_con g (ap f p) (ap f q))⁻¹) (ap_con (g ∘ f) p q) (ap (ap g) (ap_con f p q)) := by induction q;induction p;exact ids theorem ap_compose_natural {A B C : Type} (g : B → C) (f : A → B) {x y : A} {p q : x = y} (r : p = q) : square (ap (ap (g ∘ f)) r) (ap (ap g ∘ ap f) r) (ap_compose g f p) (ap_compose g f q) := natural_square (ap_compose g f) r theorem whisker_right_eq_of_con_inv_eq_idp {p q : a₁ = a₂} (r : p ⬝ q⁻¹ = idp) : whisker_right (eq_of_con_inv_eq_idp r) q⁻¹ ⬝ con.right_inv q = r := by induction q; esimp at r; cases r; reflexivity theorem ap_eq_of_con_inv_eq_idp (f : A → B) {p q : a₁ = a₂} (r : p ⬝ q⁻¹ = idp) : ap02 f (eq_of_con_inv_eq_idp r) = eq_of_con_inv_eq_idp (whisker_left _ !ap_inv⁻¹ ⬝ !ap_con⁻¹ ⬝ ap02 f r) := by induction q;esimp at *;cases r;reflexivity theorem eq_of_con_inv_eq_idp_con2 {p p' q q' : a₁ = a₂} (r : p = p') (s : q = q') (t : p' ⬝ q'⁻¹ = idp) : eq_of_con_inv_eq_idp (r ◾ inverse2 s ⬝ t) = r ⬝ eq_of_con_inv_eq_idp t ⬝ s⁻¹ := by induction s;induction r;induction q;reflexivity definition naturality_apd_eq {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a} (H : f ~ g) (p : a = a₂) : apd f p = concato_eq (eq_concato (H a) (apd g p)) (H a₂)⁻¹ := begin induction p, esimp, generalizes [H a, g a], intro ga Ha, induction Ha, reflexivity end theorem con_tr_idp {P : A → Type} {x y : A} (q : x = y) (u : P x) : con_tr idp q u = ap (λp, p ▸ u) (idp_con q) := by induction q;reflexivity end eq