/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura, Floris van Doorn Partially ported from the standard library -/ open eq eq.ops decidable namespace bool local attribute bor [reducible] local attribute band [reducible] theorem dichotomy (b : bool) : b = ff ⊎ b = tt := bool.cases_on b (sum.inl rfl) (sum.inr rfl) theorem cond_ff {A : Type} (t e : A) : cond ff t e = e := rfl theorem cond_tt {A : Type} (t e : A) : cond tt t e = t := rfl theorem eq_tt_of_ne_ff : Π {a : bool}, a ≠ ff → a = tt | @eq_tt_of_ne_ff tt H := rfl | @eq_tt_of_ne_ff ff H := absurd rfl H theorem eq_ff_of_ne_tt : Π {a : bool}, a ≠ tt → a = ff | @eq_ff_of_ne_tt tt H := absurd rfl H | @eq_ff_of_ne_tt ff H := rfl theorem absurd_of_eq_ff_of_eq_tt {B : Type} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B := absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt theorem tt_bor (a : bool) : bor tt a = tt := rfl notation a || b := bor a b theorem bor_tt (a : bool) : a || tt = tt := bool.cases_on a rfl rfl theorem ff_bor (a : bool) : ff || a = a := bool.cases_on a rfl rfl theorem bor_ff (a : bool) : a || ff = a := bool.cases_on a rfl rfl theorem bor_self (a : bool) : a || a = a := bool.cases_on a rfl rfl theorem bor.comm (a b : bool) : a || b = b || a := by cases a; repeat (cases b | reflexivity) theorem bor.assoc (a b c : bool) : (a || b) || c = a || (b || c) := match a with | ff := by rewrite *ff_bor | tt := by rewrite *tt_bor end theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ⊎ b = tt := bool.rec_on a (suppose ff || b = tt, have b = tt, from !ff_bor ▸ this, sum.inr this) (suppose tt || b = tt, sum.inl rfl) theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt := by rewrite H theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt := bool.rec_on a (by rewrite H) (by rewrite H) theorem ff_band (a : bool) : ff && a = ff := rfl theorem tt_band (a : bool) : tt && a = a := bool.cases_on a rfl rfl theorem band_ff (a : bool) : a && ff = ff := bool.cases_on a rfl rfl theorem band_tt (a : bool) : a && tt = a := bool.cases_on a rfl rfl theorem band_self (a : bool) : a && a = a := bool.cases_on a rfl rfl theorem band.comm (a b : bool) : a && b = b && a := bool.cases_on a (bool.cases_on b rfl rfl) (bool.cases_on b rfl rfl) theorem band.assoc (a b c : bool) : (a && b) && c = a && (b && c) := match a with | ff := by rewrite *ff_band | tt := by rewrite *tt_band end theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt := sum.elim (dichotomy a) (suppose a = ff, absurd (calc ff = ff && b : ff_band ... = a && b : this ... = tt : H) ff_ne_tt) (suppose a = tt, this) theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt := by rewrite [H₁, H₂] theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt := band_elim_left (!band.comm ⬝ H) theorem bnot_bnot (a : bool) : bnot (bnot a) = a := bool.cases_on a rfl rfl theorem bnot_empty : bnot ff = tt := rfl theorem bnot_unit : bnot tt = ff := rfl theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt := bool.cases_on a (by contradiction) (λ h, rfl) theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff := bool.cases_on a (λ h, rfl) (by contradiction) definition bxor (x:bool) (y:bool) := cond x (bnot y) y /- HoTT-related stuff -/ open is_equiv equiv function is_trunc option unit decidable definition is_equiv_bnot [constructor] [instance] [priority 500] : is_equiv bnot := begin fapply is_equiv.mk, exact bnot, all_goals (intro b;cases b), do 6 reflexivity -- all_goals (focus (intro b;cases b;all_goals reflexivity)), end definition bnot_ne : Π(b : bool), bnot b ≠ b | bnot_ne tt := ff_ne_tt | bnot_ne ff := ne.symm ff_ne_tt definition equiv_bnot [constructor] : bool ≃ bool := equiv.mk bnot _ definition eq_bnot : bool = bool := ua equiv_bnot definition eq_bnot_ne_idp : eq_bnot ≠ idp := assume H : eq_bnot = idp, have H2 : bnot = id, from !cast_ua_fn⁻¹ ⬝ ap cast H, absurd (ap10 H2 tt) ff_ne_tt theorem is_set_bool : is_set bool := _ theorem not_is_prop_bool_eq_bool : ¬ is_prop (bool = bool) := λ H, eq_bnot_ne_idp !is_prop.elim definition bool_equiv_option_unit [constructor] : bool ≃ option unit := begin fapply equiv.MK, { intro b, cases b, exact none, exact some star}, { intro u, cases u, exact ff, exact tt}, { intro u, cases u with u, reflexivity, cases u, reflexivity}, { intro b, cases b, reflexivity, reflexivity}, end definition tbool [constructor] : Set := trunctype.mk bool _ end bool