-- category abbreviation Prop := Type.{0} variable eq {A : Type} : A → A → Prop infix `=`:50 := eq inductive category (ob : Type) (mor : ob → ob → Type) : Type := mk : Π (id : Π (A : ob), mor A A), (Π (A B : ob) (f : mor A A), id A = f) → category ob mor abbreviation id (ob : Type) (mor : ob → ob → Type) (Cat : category ob mor) := category.rec (λ id idl, id) Cat theorem id_left (ob : Type) (mor : ob → ob → Type) (Cat : category ob mor) (A : ob) (f : mor A A) : @eq (mor A A) (id ob mor Cat A) f := @category.rec ob mor (λ (C : category ob mor), @eq (mor A A) (id ob mor C A) f) (λ (id : Π (A : ob), mor A A) (idl : Π (A : ob), _), idl A A f) Cat