/- Copyright (c) 2015 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.trunc Authors: Jakob von Raumer, Floris van Doorn Properties of is_trunc -/ import types.pi types.eq open sigma sigma.ops pi function eq equiv eq funext namespace is_trunc definition is_contr.sigma_char (A : Type) : (Σ (center : A), Π (a : A), center = a) ≃ (is_contr A) := begin fapply equiv.mk, {intro S, apply is_contr.mk, exact S.2}, {fapply is_equiv.adjointify, {intro H, apply sigma.mk, exact (@contr A H)}, {intro H, apply (is_trunc.rec_on H), intro Hint, apply (contr_internal.rec_on Hint), intros [H1, H2], apply idp}, {intro S, cases S, apply idp}} end definition is_trunc.pi_char (n : trunc_index) (A : Type) : (Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) := begin fapply equiv.MK, {intro H, apply is_trunc_succ_intro}, {intros [H, x, y], apply is_trunc_eq}, {intro H, apply (is_trunc.rec_on H), intro Hint, apply idp}, {intro P, apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro b, esimp [function.id,compose,is_trunc_succ_intro,is_trunc_eq], generalize (P a b), intro H, apply (is_trunc.rec_on H), intro H', apply idp}, end definition is_hprop_is_trunc [instance] (n : trunc_index) : Π (A : Type), is_hprop (is_trunc n A) := begin apply (trunc_index.rec_on n), {intro A, apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv, apply is_contr.sigma_char, apply (@is_hprop.mk), intros, fapply sigma_eq, apply x.2, apply (@is_hprop.elim), apply is_trunc_pi, intro a, apply is_hprop.mk, intros [w, z], have H : is_hset A, begin apply is_trunc_succ, apply is_trunc_succ, apply is_contr.mk, exact y.2 end, fapply (@is_hset.elim A _ _ _ w z)}, {intros [n', IH, A], apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv, apply is_trunc.pi_char}, end definition is_trunc_succ_of_imp_is_trunc_succ {A : Type} {n : trunc_index} (H : A → is_trunc (n.+1) A) : is_trunc (n.+1) A := @is_trunc_succ_intro _ _ (λx y, @is_trunc_eq _ _ (H x) x y) definition is_trunc_of_imp_is_trunc_of_leq {A : Type} {n : trunc_index} (Hn : -1 ≤ n) (H : A → is_trunc n A) : is_trunc n A := trunc_index.rec_on n (λHn H, empty.rec _ Hn) (λn IH Hn, is_trunc_succ_of_imp_is_trunc_succ) Hn H definition is_hset_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_hset A := is_hset.mk _ (λa b p q, eq.rec_on q K p) theorem is_hset_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u}) (mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) : is_hset A := is_hset_of_axiom_K (λa p, have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd, have H3 : Π(r : R a a), transport (λx, a = x) p (imp r) = imp (transport (λx, R a x) p r), from to_fun (equiv.symm !heq_pi) H2, have H4 : imp (refl a) ⬝ p = imp (refl a), from calc imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r ... = imp (transport (λx, R a x) p (refl a)) : H3 ... = imp (refl a) : is_hprop.elim, cancel_left H4) definition relation_equiv_eq {A : Type} (R : A → A → Type) (mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a) (imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b := @equiv_of_is_hprop _ _ _ (@is_trunc_eq _ _ (is_hset_of_relation R mere refl @imp) a b) imp (λp, p ▹ refl a) local attribute not [reducible] definition is_hset_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b) : is_hset A := is_hset_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H section open decidable --this is proven differently in init.hedberg definition is_hset_of_decidable_eq (A : Type) [H : decidable_eq A] : is_hset A := is_hset_of_double_neg_elim (λa b, by_contradiction) end definition is_trunc_of_axiom_K_of_leq {A : Type} (n : trunc_index) (H : -1 ≤ n) (K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A := @is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K)) open trunctype equiv equiv.ops protected definition trunctype.sigma_char.{l} (n : trunc_index) : (trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) := begin fapply equiv.MK, /--/ intro A, exact (⟨carrier A, struct A⟩), /--/ intro S, exact (trunctype.mk S.1 S.2), /--/ intro S, apply (sigma.rec_on S), intros [S1, S2], apply idp, intro A, apply (trunctype.rec_on A), intros [A1, A2], apply idp, end -- set_option pp.notation false protected definition trunctype.eq (n : trunc_index) (A B : n-Type) : (A = B) ≃ (carrier A = carrier B) := calc (A = B) ≃ (trunctype.sigma_char n A = trunctype.sigma_char n B) : eq_equiv_fn_eq_of_equiv ... ≃ ((trunctype.sigma_char n A).1 = (trunctype.sigma_char n B).1) : equiv.symm (!equiv_subtype) ... ≃ (carrier A = carrier B) : equiv.refl end is_trunc