import logic context parameter {A : Type} parameter f : A → A → A parameter one : A parameter inv : A → A infixl `*`:75 := f postfix `^-1`:100 := inv definition is_assoc := ∀ a b c, (a*b)*c = a*b*c definition is_id := ∀ a, a*one = a definition is_inv := ∀ a, a*a^-1 = one end inductive group_struct (A : Type) : Type := mk_group_struct : Π (mul : A → A → A) (one : A) (inv : A → A), is_assoc mul → is_id mul one → is_inv mul one inv → group_struct A inductive group : Type := mk_group : Π (A : Type), group_struct A → group definition carrier (g : group) : Type := group.rec (λ c s, c) g definition group_to_struct [instance] (g : group) : group_struct (carrier g) := group.rec (λ (A : Type) (s : group_struct A), s) g check group_struct definition mul {A : Type} {s : group_struct A} (a b : A) : A := group_struct.rec (λ mul one inv h1 h2 h3, mul) s a b infixl `*`:75 := mul constant G1 : group.{1} constant G2 : group.{1} constants a b c : (carrier G2) constants d e : (carrier G1) check a * b * b check d * e