/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "util/interrupt.h" #include "util/lbool.h" #include "kernel/converter.h" #include "kernel/expr_maps.h" #include "kernel/instantiate.h" #include "kernel/free_vars.h" #include "kernel/type_checker.h" namespace lean { /** \brief Predicate for deciding whether \c d is an opaque definition or not. Here is the basic idea: 1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment. The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps. We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined. We should view non-opaque definitions as "inline definitions" used in programming languages such as C++. 2) Whenever type checking an expression, the user can provide a predicate that is true for for additional definitions that should be considered opaque. Note that, if \c t type checks when using predicate P, then t also type checks (modulo resource constraints) without it. Again, the purpose of the predicate is to mimimize the number of delta-reduction steps. 3) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as transparent when we are type checking another definition/theorem D' also in M. This rule only applies if D is not a theorem, nor pred(D) is true. To implement this feature, this class has a field m_module_idx that is not none when this rule should be applied. */ bool is_opaque(declaration const & d, extra_opaque_pred const & pred, optional const & mod_idx) { lean_assert(d.is_definition()); if (d.is_theorem()) return true; // theorems are always opaque if (pred(d.get_name())) return true; // extra_opaque predicate overrides opaque flag if (!d.is_opaque()) return false; // d is a transparent definition if (mod_idx && d.get_module_idx() == *mod_idx) return false; // the opaque definitions in mod_idx are considered transparent return true; // d is opaque } extra_opaque_pred g_always_false([](name const &) { return false; }); extra_opaque_pred const & no_extra_opaque() { return g_always_false; } /** \brief Auxiliary method for \c is_delta */ static optional is_delta_core(environment const & env, expr const & e, extra_opaque_pred const & pred, optional const & mod_idx) { if (is_constant(e)) { if (auto d = env.find(const_name(e))) if (d->is_definition() && !is_opaque(*d, pred, mod_idx)) return d; } return none_declaration(); } /** \brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one to be expanded. */ optional is_delta(environment const & env, expr const & e, extra_opaque_pred const & pred, optional const & mod_idx) { return is_delta_core(env, get_app_fn(e), pred, mod_idx); } static optional g_opt_main_module_idx(g_main_module_idx); optional is_delta(environment const & env, expr const & e, extra_opaque_pred const & pred) { return is_delta(env, e, pred, g_opt_main_module_idx); } optional is_delta(environment const & env, expr const & e) { return is_delta(env, e, g_always_false); } static no_delayed_justification g_no_delayed_jst; pair converter::is_def_eq(expr const & t, expr const & s, type_checker & c) { return is_def_eq(t, s, c, g_no_delayed_jst); } /** \brief Do nothing converter */ struct dummy_converter : public converter { virtual pair whnf(expr const & e, type_checker &) { return mk_pair(e, constraint_seq()); } virtual pair is_def_eq(expr const &, expr const &, type_checker &, delayed_justification &) { return mk_pair(true, constraint_seq()); } virtual optional get_module_idx() const { return optional(); } }; std::unique_ptr mk_dummy_converter() { return std::unique_ptr(new dummy_converter()); } name converter::mk_fresh_name(type_checker & tc) { return tc.mk_fresh_name(); } pair converter::infer_type(type_checker & tc, expr const & e) { return tc.infer_type(e); } extension_context & converter::get_extension(type_checker & tc) { return tc.get_extension(); } static expr g_dont_care(Const("dontcare")); struct default_converter : public converter { environment m_env; optional m_module_idx; bool m_memoize; extra_opaque_pred m_extra_pred; expr_struct_map m_whnf_core_cache; expr_struct_map> m_whnf_cache; default_converter(environment const & env, optional mod_idx, bool memoize, extra_opaque_pred const & pred): m_env(env), m_module_idx(mod_idx), m_memoize(memoize), m_extra_pred(pred) { } constraint mk_eq_cnstr(expr const & lhs, expr const & rhs, justification const & j) { return ::lean::mk_eq_cnstr(lhs, rhs, j, static_cast(m_module_idx)); } optional expand_macro(expr const & m, type_checker & c) { lean_assert(is_macro(m)); return macro_def(m).expand(m, get_extension(c)); } /** \brief Apply normalizer extensions to \c e. */ optional> norm_ext(expr const & e, type_checker & c) { return m_env.norm_ext()(e, get_extension(c)); } optional d_norm_ext(expr const & e, type_checker & c, constraint_seq & cs) { if (auto r = norm_ext(e, c)) { cs = cs + r->second; return some_expr(r->first); } else { return none_expr(); } } /** \brief Return true if \c e may be reduced later after metavariables are instantiated. */ bool may_reduce_later(expr const & e, type_checker & c) { return m_env.norm_ext().may_reduce_later(e, get_extension(c)); } /** \brief Try to apply eta-reduction to \c e. */ expr try_eta(expr const & e) { lean_assert(is_lambda(e)); expr const & b = binding_body(e); if (is_lambda(b)) { expr new_b = try_eta(b); if (is_eqp(b, new_b)) { return e; } else if (is_app(new_b) && is_var(app_arg(new_b), 0) && !has_free_var(app_fn(new_b), 0)) { return lower_free_vars(app_fn(new_b), 1); } else { return update_binding(e, binding_domain(e), new_b); } } else if (is_app(b) && is_var(app_arg(b), 0) && !has_free_var(app_fn(b), 0)) { return lower_free_vars(app_fn(b), 1); } else { return e; } } /** \brief Weak head normal form core procedure. It does not perform delta reduction nor normalization extensions. */ expr whnf_core(expr const & e, type_checker & c) { check_system("whnf"); // handle easy cases switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: return e; case expr_kind::Lambda: case expr_kind::Macro: case expr_kind::App: break; } // check cache if (m_memoize) { auto it = m_whnf_core_cache.find(e); if (it != m_whnf_core_cache.end()) return it->second; } // do the actual work expr r; switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Lambda: r = (m_env.eta()) ? try_eta(e) : e; break; case expr_kind::Macro: if (auto m = expand_macro(e, c)) r = whnf_core(*m, c); else r = e; break; case expr_kind::App: { buffer args; expr f0 = get_app_rev_args(e, args); expr f = whnf_core(f0, c); if (is_lambda(f)) { unsigned m = 1; unsigned num_args = args.size(); while (is_lambda(binding_body(f)) && m < num_args) { f = binding_body(f); m++; } lean_assert(m <= num_args); r = whnf_core(mk_rev_app(instantiate(binding_body(f), m, args.data() + (num_args - m)), num_args - m, args.data()), c); } else { r = f == f0 ? e : whnf_core(mk_rev_app(f, args.size(), args.data()), c); } break; }} if (m_memoize) m_whnf_core_cache.insert(mk_pair(e, r)); return r; } bool is_opaque(declaration const & d) const { return ::lean::is_opaque(d, m_extra_pred, m_module_idx); } /** \brief Expand \c e if it is non-opaque constant with weight >= w */ expr unfold_name_core(expr e, unsigned w) { if (is_constant(e)) { if (auto d = m_env.find(const_name(e))) { if (d->is_definition() && !is_opaque(*d) && d->get_weight() >= w) return unfold_name_core(instantiate_value_univ_params(*d, const_levels(e)), w); } } return e; } /** \brief Expand constants and application where the function is a constant. The unfolding is only performend if the constant corresponds to a non-opaque definition with weight >= w. */ expr unfold_names(expr const & e, unsigned w) { if (is_app(e)) { expr f0 = get_app_fn(e); expr f = unfold_name_core(f0, w); if (is_eqp(f, f0)) { return e; } else { buffer args; get_app_rev_args(e, args); return mk_rev_app(f, args); } } else { return unfold_name_core(e, w); } } /** \brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one to be expanded. */ optional is_delta(expr const & e) { return ::lean::is_delta(m_env, get_app_fn(e), m_extra_pred, m_module_idx); } /** \brief Weak head normal form core procedure that perform delta reduction for non-opaque constants with weight greater than or equal to \c w. This method is based on whnf_core(expr const &) and \c unfold_names. \remark This method does not use normalization extensions attached in the environment. */ expr whnf_core(expr e, unsigned w, type_checker & c) { while (true) { expr new_e = unfold_names(whnf_core(e, c), w); if (is_eqp(e, new_e)) return e; e = new_e; } } /** \brief Put expression \c t in weak head normal form */ virtual pair whnf(expr const & e_prime, type_checker & c) { // Do not cache easy cases switch (e_prime.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: return to_ecs(e_prime); case expr_kind::Lambda: case expr_kind::Macro: case expr_kind::App: case expr_kind::Constant: break; } expr e = e_prime; // check cache if (m_memoize) { auto it = m_whnf_cache.find(e); if (it != m_whnf_cache.end()) return it->second; } expr t = e; constraint_seq cs; while (true) { expr t1 = whnf_core(t, 0, c); if (auto new_t = d_norm_ext(t1, c, cs)) { t = *new_t; } else { auto r = mk_pair(t1, cs); if (m_memoize) m_whnf_cache.insert(mk_pair(e, r)); return r; } } } expr whnf(expr const & e_prime, type_checker & c, constraint_seq & cs) { auto r = whnf(e_prime, c); cs = cs + r.second; return r.first; } pair to_bcs(bool b) { return mk_pair(b, constraint_seq()); } pair to_bcs(bool b, constraint const & c) { return mk_pair(b, constraint_seq(c)); } pair to_bcs(bool b, constraint_seq const & cs) { return mk_pair(b, cs); } /** \brief Given lambda/Pi expressions \c t and \c s, return true iff \c t is def eq to \c s. t and s are definitionally equal iff domain(t) is definitionally equal to domain(s) and body(t) is definitionally equal to body(s) */ bool is_def_eq_binding(expr t, expr s, type_checker & c, delayed_justification & jst, constraint_seq & cs) { lean_assert(t.kind() == s.kind()); lean_assert(is_binding(t)); expr_kind k = t.kind(); buffer subst; do { optional var_s_type; if (binding_domain(t) != binding_domain(s)) { var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data()); expr var_t_type = instantiate_rev(binding_domain(t), subst.size(), subst.data()); if (!is_def_eq(var_t_type, *var_s_type, c, jst, cs)) return false; } if (!closed(binding_body(t)) || !closed(binding_body(s))) { // local is used inside t or s if (!var_s_type) var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data()); subst.push_back(mk_local(mk_fresh_name(c), binding_name(s), *var_s_type, binding_info(s))); } else { subst.push_back(g_dont_care); // don't care } t = binding_body(t); s = binding_body(s); } while (t.kind() == k && s.kind() == k); return is_def_eq(instantiate_rev(t, subst.size(), subst.data()), instantiate_rev(s, subst.size(), subst.data()), c, jst, cs); } bool is_def_eq(level const & l1, level const & l2, delayed_justification & jst, constraint_seq & cs) { if (is_equivalent(l1, l2)) { return true; } else if (has_meta(l1) || has_meta(l2)) { cs = cs + constraint_seq(mk_level_eq_cnstr(l1, l2, jst.get())); return true; } else { return false; } } bool is_def_eq(levels const & ls1, levels const & ls2, type_checker & c, delayed_justification & jst, constraint_seq & cs) { if (is_nil(ls1) && is_nil(ls2)) { return true; } else if (!is_nil(ls1) && !is_nil(ls2)) { return is_def_eq(head(ls1), head(ls2), jst, cs) && is_def_eq(tail(ls1), tail(ls2), c, jst, cs); } else { return false; } } static pair to_lbcs(lbool l) { return mk_pair(l, constraint_seq()); } static pair to_lbcs(lbool l, constraint const & c) { return mk_pair(l, constraint_seq(c)); } static pair to_lbcs(pair const & bcs) { return mk_pair(to_lbool(bcs.first), bcs.second); } /** \brief This is an auxiliary method for is_def_eq. It handles the "easy cases". */ lbool quick_is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst, constraint_seq & cs) { if (t == s) return l_true; // t and s are structurally equal if (is_meta(t) || is_meta(s)) { // if t or s is a metavariable (or the application of a metavariable), then add constraint cs = cs + constraint_seq(mk_eq_cnstr(t, s, jst.get())); return l_true; } if (t.kind() == s.kind()) { switch (t.kind()) { case expr_kind::Lambda: case expr_kind::Pi: return to_lbool(is_def_eq_binding(t, s, c, jst, cs)); case expr_kind::Sort: return to_lbool(is_def_eq(sort_level(t), sort_level(s), c, jst, cs)); case expr_kind::Meta: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Var: case expr_kind::Local: case expr_kind::App: case expr_kind::Constant: case expr_kind::Macro: // We do not handle these cases in this method. break; } } return l_undef; // This is not an "easy case" } /** \brief Return true if arguments of \c t are definitionally equal to arguments of \c s. This method is used to implement an optimization in the method \c is_def_eq. */ bool is_def_eq_args(expr t, expr s, type_checker & c, delayed_justification & jst, constraint_seq & cs) { while (is_app(t) && is_app(s)) { if (!is_def_eq(app_arg(t), app_arg(s), c, jst, cs)) return false; t = app_fn(t); s = app_fn(s); } return !is_app(t) && !is_app(s); } /** \brief Return true iff t is a constant named f_name or an application of the form (f_name a_1 ... a_k) */ bool is_app_of(expr t, name const & f_name) { t = get_app_fn(t); return is_constant(t) && const_name(t) == f_name; } /** \brief Try to solve (fun (x : A), B) =?= s by trying eta-expansion on s */ bool try_eta_expansion(expr const & t, expr const & s, type_checker & c, delayed_justification & jst, constraint_seq & cs) { if (is_lambda(t) && !is_lambda(s)) { auto tcs = infer_type(c, s); auto wcs = whnf(tcs.first, c); expr s_type = wcs.first; if (!is_pi(s_type)) return false; expr new_s = mk_lambda(binding_name(s_type), binding_domain(s_type), mk_app(s, Var(0)), binding_info(s_type)); auto dcs = is_def_eq(t, new_s, c, jst); if (!dcs.first) return false; cs = cs + dcs.second + wcs.second + tcs.second; return true; } else { return false; } } bool is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst, constraint_seq & cs) { auto bcs = is_def_eq(t, s, c, jst); if (bcs.first) { cs = cs + bcs.second; return true; } else { return false; } } /** Return true iff t is definitionally equal to s. */ virtual pair is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst) { check_system("is_definitionally_equal"); constraint_seq cs; lbool r = quick_is_def_eq(t, s, c, jst, cs); if (r != l_undef) return to_bcs(r == l_true, cs); // apply whnf (without using delta-reduction or normalizer extensions) expr t_n = whnf_core(t, c); expr s_n = whnf_core(s, c); if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) { r = quick_is_def_eq(t_n, s_n, c, jst, cs); if (r != l_undef) return to_bcs(r == l_true, cs); } // lazy delta-reduction and then normalizer extensions while (true) { // first, keep applying lazy delta-reduction while applicable while (true) { auto d_t = is_delta(t_n); auto d_s = is_delta(s_n); if (!d_t && !d_s) { break; } else if (d_t && !d_s) { t_n = whnf_core(unfold_names(t_n, 0), c); } else if (!d_t && d_s) { s_n = whnf_core(unfold_names(s_n, 0), c); } else if (d_t->get_weight() > d_s->get_weight()) { t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1), c); } else if (d_t->get_weight() < d_s->get_weight()) { s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1), c); } else { lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight()); if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) { // If t_n and s_n are both applications of the same (non-opaque) definition, if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) { // We let the unifier deal with cases such as // (f ...) =?= (f ...) // when t_n or s_n contains metavariables break; } else { // Optimization: // We try to check if their arguments are definitionally equal. // If they are, then t_n and s_n must be definitionally equal, and we can // skip the delta-reduction step. // If the flag use_conv_opt() is not true, then we skip this optimization if (!is_opaque(*d_t) && d_t->use_conv_opt() && is_def_eq_args(t_n, s_n, c, jst, cs)) return to_bcs(true, cs); } } t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1), c); s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1), c); } r = quick_is_def_eq(t_n, s_n, c, jst, cs); if (r != l_undef) return to_bcs(r == l_true, cs); } // try normalizer extensions auto new_t_n = d_norm_ext(t_n, c, cs); auto new_s_n = d_norm_ext(s_n, c, cs); if (!new_t_n && !new_s_n) break; // t_n and s_n are in weak head normal form if (new_t_n) t_n = whnf_core(*new_t_n, c); if (new_s_n) s_n = whnf_core(*new_s_n, c); r = quick_is_def_eq(t_n, s_n, c, jst, cs); if (r != l_undef) return to_bcs(r == l_true, cs); } if (is_constant(t_n) && is_constant(s_n) && const_name(t_n) == const_name(s_n) && is_def_eq(const_levels(t_n), const_levels(s_n), c, jst, cs)) return to_bcs(true, cs); if (is_local(t_n) && is_local(s_n) && mlocal_name(t_n) == mlocal_name(s_n) && is_def_eq(mlocal_type(t_n), mlocal_type(s_n), c, jst, cs)) return to_bcs(true, cs); optional d_t, d_s; bool delay_check = false; if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) { d_t = is_delta(t_n); d_s = is_delta(s_n); if (d_t && d_s && is_eqp(*d_t, *d_s)) delay_check = true; else if (may_reduce_later(t_n, c) && may_reduce_later(s_n, c)) delay_check = true; } // At this point, t_n and s_n are in weak head normal form (modulo meta-variables and proof irrelevance) if (!delay_check && is_app(t_n) && is_app(s_n)) { buffer t_args; buffer s_args; expr t_fn = get_app_args(t_n, t_args); expr s_fn = get_app_args(s_n, s_args); constraint_seq cs_prime = cs; if (is_def_eq(t_fn, s_fn, c, jst, cs_prime) && t_args.size() == s_args.size()) { unsigned i = 0; for (; i < t_args.size(); i++) { if (!is_def_eq(t_args[i], s_args[i], c, jst, cs_prime)) break; } if (i == t_args.size()) { return to_bcs(true, cs_prime); } } } if (try_eta_expansion(t_n, s_n, c, jst, cs) || try_eta_expansion(s_n, t_n, c, jst, cs)) return to_bcs(true, cs); if (m_env.prop_proof_irrel()) { // Proof irrelevance support for Prop (aka Type.{0}) auto tcs = infer_type(c, t); auto scs = infer_type(c, s); expr t_type = tcs.first; expr s_type = scs.first; // remark: is_prop returns true only if t_type reducible to Prop. // If t_type contains metavariables, then reduction can get stuck, and is_prop will return false. auto pcs = is_prop(t_type, c); if (pcs.first) { auto dcs = is_def_eq(t_type, s_type, c, jst); if (dcs.first) return to_bcs(true, dcs.second + scs.second + pcs.second + tcs.second); } else { // If we can't stablish whether t_type is Prop, we try s_type. pcs = is_prop(s_type, c); if (pcs.first) { auto dcs = is_def_eq(t_type, s_type, c, jst); if (dcs.first) return to_bcs(true, dcs.second + scs.second + pcs.second + tcs.second); } // This procedure will miss the case where s_type and t_type cannot be reduced to Prop // because they contain metavariables. } } if (may_reduce_later(t_n, c) || may_reduce_later(s_n, c) || delay_check) { cs = cs + constraint_seq(mk_eq_cnstr(t_n, s_n, jst.get())); return to_bcs(true, cs); } return to_bcs(false); } pair is_prop(expr const & e, type_checker & c) { auto tcs = infer_type(c, e); auto wcs = whnf(tcs.first, c); if (wcs.first == Prop) return to_bcs(true, wcs.second + tcs.second); else return to_bcs(false); } virtual optional get_module_idx() const { return m_module_idx; } }; std::unique_ptr mk_default_converter(environment const & env, optional mod_idx, bool memoize, extra_opaque_pred const & pred) { return std::unique_ptr(new default_converter(env, mod_idx, memoize, pred)); } std::unique_ptr mk_default_converter(environment const & env, optional mod_idx, bool memoize) { return mk_default_converter(env, mod_idx, memoize, g_always_false); } std::unique_ptr mk_default_converter(environment const & env, bool unfold_opaque_main, bool memoize, extra_opaque_pred const & pred) { if (unfold_opaque_main) return mk_default_converter(env, optional(0), memoize, pred); else return mk_default_converter(env, optional(), memoize, pred); } std::unique_ptr mk_default_converter(environment const & env, bool unfold_opaque_main, bool memoize) { return mk_default_converter(env, unfold_opaque_main, memoize, g_always_false); } }