/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.circle Authors: Floris van Doorn Declaration of the circle -/ import .sphere open eq suspension bool sphere_index equiv definition circle [reducible] := suspension bool --redefine this as sphere 1 namespace circle definition base1 : circle := !north definition base2 : circle := !south definition seg1 : base1 = base2 := merid tt definition seg2 : base2 = base1 := (merid ff)⁻¹ definition base : circle := base1 definition loop : base = base := seg1 ⬝ seg2 definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) (x : circle) : P x := begin fapply (suspension.rec_on x), { exact Pb1}, { exact Pb2}, { intro b, cases b, apply tr_eq_of_eq_inv_tr, exact Ps2⁻¹, exact Ps1}, end definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x definition rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : apD (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = sorry ⬝ Ps1 ⬝ sorry := sorry definition rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : apD (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = sorry ⬝ Ps2 ⬝ sorry := sorry definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) (x : circle) : P := rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : P := elim2 Pb1 Pb2 Ps1 Ps2 x definition elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = sorry ⬝ Ps1 ⬝ sorry := sorry definition elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = sorry ⬝ Ps2 ⬝ sorry := sorry protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) (x : circle) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply idp}, { apply eq_tr_of_inv_tr_eq, rewrite -tr_con, apply Ploop}, end protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) : P x := rec Pbase Ploop x definition rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) : ap (rec Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry := sorry protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : circle) : P := rec Pbase (tr_constant loop Pbase ⬝ Ploop) x protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase) : P := elim Pbase Ploop x definition elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (elim Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry := sorry protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : circle) : Type := elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : circle) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := elim_type Pbase Ploop x definition elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (elim_type Pbase Ploop) loop = sorry /-Ploop-/ := sorry end circle