/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.coeq Authors: Floris van Doorn Declaration of the coequalizer -/ import .type_quotient open type_quotient eq equiv namespace coeq section universe u parameters {A B : Type.{u}} (f g : A → B) inductive coeq_rel : B → B → Type := | Rmk : Π(x : A), coeq_rel (f x) (g x) open coeq_rel local abbreviation R := coeq_rel definition coeq : Type := type_quotient coeq_rel -- TODO: define this in root namespace definition coeq_i (x : B) : coeq := class_of R x /- cp is the name Coq uses. I don't know what it abbreviates, but at least it's short :-) -/ definition cp (x : A) : coeq_i (f x) = coeq_i (g x) := eq_of_rel (Rmk f g x) protected definition rec {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), cp x ▹ P_i (f x) = P_i (g x)) (y : coeq) : P y := begin fapply (type_quotient.rec_on y), { intro a, apply P_i}, { intros [a, a', H], cases H, apply Pcp} end protected definition rec_on [reducible] {P : coeq → Type} (y : coeq) (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), cp x ▹ P_i (f x) = P_i (g x)) : P y := rec P_i Pcp y definition rec_cp {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), cp x ▹ P_i (f x) = P_i (g x)) (x : A) : apD (rec P_i Pcp) (cp x) = sorry ⬝ Pcp x ⬝ sorry := sorry protected definition elim {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) (y : coeq) : P := rec P_i (λx, !tr_constant ⬝ Pcp x) y protected definition elim_on [reducible] {P : Type} (y : coeq) (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) : P := elim P_i Pcp y definition elim_cp {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x)) (x : A) : ap (elim P_i Pcp) (cp x) = sorry ⬝ Pcp x ⬝ sorry := sorry protected definition elim_type (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (y : coeq) : Type := elim P_i (λx, ua (Pcp x)) y protected definition elim_type_on [reducible] (y : coeq) (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) : Type := elim_type P_i Pcp y definition elim_type_cp (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (x : A) : transport (elim_type P_i Pcp) (cp x) = sorry /-Pcp x-/ := sorry end end coeq