/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Parity -/ import data.nat.div logic.identities namespace nat open decidable definition even (n : nat) := n mod 2 = 0 definition decidable_even [instance] : ∀ n, decidable (even n) := take n, !nat.has_decidable_eq definition odd (n : nat) := ¬even n definition decidable_odd [instance] : ∀ n, decidable (odd n) := take n, decidable_not lemma even_of_dvd {n} : 2 ∣ n → even n := mod_eq_zero_of_dvd lemma dvd_of_even {n} : even n → 2 ∣ n := dvd_of_mod_eq_zero lemma not_odd_zero : ¬ odd 0 := dec_trivial lemma even_zero : even 0 := dec_trivial lemma odd_one : odd 1 := dec_trivial lemma not_even_one : ¬ even 1 := dec_trivial lemma odd_eq_not_even (n : nat) : odd n = ¬ even n := rfl lemma odd_iff_not_even (n : nat) : odd n ↔ ¬ even n := !iff.refl lemma odd_of_not_even {n} : ¬ even n → odd n := suppose ¬ even n, iff.mpr !odd_iff_not_even this lemma even_of_not_odd {n} : ¬ odd n → even n := suppose ¬ odd n, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) this) lemma not_odd_of_even {n} : even n → ¬ odd n := suppose even n, iff.mpr (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro this) lemma not_even_of_odd {n} : odd n → ¬ even n := suppose odd n, iff.mp !odd_iff_not_even this lemma odd_succ_of_even {n} : even n → odd (succ n) := suppose even n, by_contradiction (suppose ¬ odd (succ n), assert 0 = 1, from calc 0 = (n+1) mod 2 : even_of_not_odd this ... = 1 mod 2 : add_mod_eq_add_mod_right 1 `even n`, by contradiction) lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1 | 0 h₁ h₂ := absurd rfl h₁ | 1 h₁ h₂ := rfl | (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 := suppose odd n, have ¬ n mod 2 = 0, from this, have n mod 2 < 2, from mod_lt n dec_trivial, eq_1_of_ne_0_lt_2 `¬ n mod 2 = 0` `n mod 2 < 2` lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n := suppose n mod 2 = 1, by_contradiction (suppose ¬ odd n, assert n mod 2 = 0, from even_of_not_odd this, by rewrite this at *; contradiction) lemma even_succ_of_odd {n} : odd n → even (succ n) := suppose odd n, assert n mod 2 = 1 mod 2, from mod_eq_of_odd this, assert (n+1) mod 2 = 2 mod 2, from add_mod_eq_add_mod_right 1 this, by rewrite mod_self at this; exact this lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) := suppose odd n, odd_succ_of_even (even_succ_of_odd this) lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) := suppose even n, even_succ_of_odd (odd_succ_of_even this) lemma even_of_odd_succ {n} : odd (succ n) → even n := suppose odd (succ n), by_contradiction (suppose ¬ even n, have odd n, from odd_of_not_even this, have even (succ n), from even_succ_of_odd this, absurd this (not_even_of_odd `odd (succ n)`)) lemma odd_of_even_succ {n} : even (succ n) → odd n := suppose even (succ n), by_contradiction (suppose ¬ odd n, have even n, from even_of_not_odd this, have odd (succ n), from odd_succ_of_even this, absurd `even (succ n)` (not_even_of_odd this)) lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n := suppose even (n+2), even_of_odd_succ (odd_of_even_succ this) lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n := suppose odd (n+2), odd_of_even_succ (even_of_odd_succ this) lemma dvd_of_odd {n} : odd n → 2 ∣ n+1 := suppose odd n, dvd_of_even (even_succ_of_odd this) lemma odd_of_dvd {n} : 2 ∣ n+1 → odd n := suppose 2 ∣ n+1, odd_of_even_succ (even_of_dvd this) lemma even_two_mul : ∀ n, even (2 * n) := take n, even_of_dvd (dvd_mul_right 2 n) lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) := take n, odd_succ_of_even (even_two_mul n) lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) := take n, not_even_of_odd (odd_two_mul_plus_one n) lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) := take n, not_odd_of_even (even_two_mul n) lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n) | 0 h := absurd h not_odd_zero | (n+1) h := even_of_odd_succ h lemma even_or_odd : ∀ n, even n ∨ odd n := λ n, by_cases (λ h : even n, or.inl h) (λ h : ¬ even n, or.inr (odd_of_not_even h)) lemma exists_of_even {n} : even n → ∃ k, n = 2*k := λ h, exists_eq_mul_right_of_dvd (dvd_of_even h) lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1 | 0 h := absurd h not_odd_zero | (n+1) h := obtain k (hk : n = 2*k), from exists_of_even (even_of_odd_succ h), exists.intro k (by subst n) lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n := suppose ∃ k, n = 2 * k, obtain k (hk : n = 2 * k), from this, have 2 ∣ n, by subst n; apply dvd_mul_right, even_of_dvd this lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n := assume h, by_contradiction (λ hn, have even n, from even_of_not_odd hn, have ∃ k, n = 2 * k, from exists_of_even this, obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h, obtain k₂ (hk₂ : n = 2 * k₂), from this, assert (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂], begin rewrite [mul_mod_right at this, add.comm at this, add_mul_mod_self_left at this], contradiction end) lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) := suppose even n, suppose even m, obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even `even n`, obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even `even m`, even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib])) lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) := suppose odd n, suppose odd m, assert even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd `odd n`) (even_succ_of_odd `odd m`), have even(succ (succ (n + m))), by rewrite [add_succ at this, succ_add at this]; exact this, even_of_even_succ_succ this lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) := suppose even n, suppose odd m, assert even (n + succ m), from even_add_of_even_of_even `even n` (even_succ_of_odd `odd m`), odd_of_even_succ this lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) := suppose odd n, suppose even m, assert odd (m+n), from odd_add_of_even_of_odd `even m` `odd n`, by rewrite add.comm at this; exact this lemma even_mul_of_even_left {n} (m) : even n → even (n*m) := suppose even n, obtain k (hk : n = 2*k), from exists_of_even this, even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc])) lemma even_mul_of_even_right {n} (m) : even n → even (m*n) := suppose even n, assert even (n*m), from even_mul_of_even_left _ this, by rewrite mul.comm at this; exact this lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) := suppose odd n, suppose odd m, assert even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd `odd m`), assert even (n * m + n), by rewrite mul_succ at this; exact this, by_contradiction (suppose ¬ odd (n*m), assert even (n*m), from even_of_not_odd this, absurd `even (n * m + n)` (not_even_of_odd (odd_add_of_even_of_odd this `odd n`))) lemma eq_of_div2_of_even {n m : nat} : n div 2 = m div 2 → (even n ↔ even m) → n = m := assume h₁ h₂, or.elim (em (even n)) (suppose even n, or.elim (em (even m)) (suppose even m, obtain w₁ (hw₁ : n = 2*w₁), from exists_of_even `even n`, obtain w₂ (hw₂ : m = 2*w₂), from exists_of_even `even m`, begin substvars, rewrite [mul.comm 2 w₁ at h₁, mul.comm 2 w₂ at h₁, *mul_div_cancel _ (dec_trivial : 2 > 0) at h₁, h₁] end) (suppose odd m, absurd `odd m` (not_odd_of_even (iff.mp h₂ `even n`)))) (suppose odd n, or.elim (em (even m)) (suppose even m, absurd `odd n` (not_odd_of_even (iff.mpr h₂ `even m`))) (suppose odd m, assert d : 1 div 2 = 0, from dec_trivial, obtain w₁ (hw₁ : n = 2*w₁ + 1), from exists_of_odd `odd n`, obtain w₂ (hw₂ : m = 2*w₂ + 1), from exists_of_odd `odd m`, begin substvars, rewrite [add.comm at h₁, add_mul_div_self_left _ _ (dec_trivial : 2 > 0) at h₁, d at h₁, zero_add at h₁], rewrite [add.comm at h₁, add_mul_div_self_left _ _ (dec_trivial : 2 > 0) at h₁, d at h₁, zero_add at h₁], rewrite h₁ end)) end nat