/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Metric spaces. -/ import data.real.complete data.pnat data.list.sort ..topology.basic data.set open nat real eq.ops classical structure metric_space [class] (M : Type) : Type := (dist : M → M → ℝ) (dist_self : ∀ x : M, dist x x = 0) (eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y) (dist_comm : ∀ x y : M, dist x y = dist y x) (dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z) namespace analysis section metric_space_M variables {M : Type} [metric_space M] definition dist (x y : M) : ℝ := metric_space.dist x y proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y := metric_space.eq_of_dist_eq_zero H proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y := iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self) proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z := metric_space.dist_triangle x y z proposition dist_nonneg (x y : M) : 0 ≤ dist x y := have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle, have 2 * dist x y ≥ 0, using this, by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this, nonneg_of_mul_nonneg_left this two_pos proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 := lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹)) proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y := suppose x = y, have H1 [visible] : dist x x > 0, by rewrite this at {2}; exact H, by rewrite dist_self at H1; apply not_lt_self _ H1 proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y := eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H) /- convergence of a sequence -/ definition converges_to_seq (X : ℕ → M) (y : M) : Prop := ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε -- the same, with ≤ in place of <; easier to prove, harder to use definition converges_to_seq.intro {X : ℕ → M} {y : M} (H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) : converges_to_seq X y := take ε, assume epos : ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N HN, from H e2pos, exists.intro N (take n, suppose n ≥ N, calc dist (X n) y ≤ ε / 2 : HN _ `n ≥ N` ... < ε : div_two_lt_of_pos epos) notation X `⟶` y `in` `ℕ` := converges_to_seq X y definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] : (X ⟶ limit_seq X in ℕ) := some_spec H proposition converges_to_seq_unique {X : ℕ → M} {y₁ y₂ : M} (H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ := eq_of_forall_dist_le (take ε, suppose ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos, let N := max N₁ N₂ in have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left, have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right, have dist y₁ y₂ < ε, from calc dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle ... = dist (X N) y₁ + dist (X N) y₂ : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves, show dist y₁ y₂ ≤ ε, from le_of_lt this) proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : y = @limit_seq M _ X (exists.intro y H) := converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H)) proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ := take ε, assume egt0 : ε > 0, exists.intro 0 (take n, suppose n ≥ 0, calc dist y y = 0 : !dist_self ... < ε : egt0) proposition converges_to_seq_offset {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (n + k)) ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro N (take n : ℕ, assume ngtN : n ≥ N, show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right)) proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (k + n)) ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm), by+ rewrite aux; exact converges_to_seq_offset k H proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : (λ n, X (succ n)) ⟶ y in ℕ := converges_to_seq_offset 1 H proposition converges_to_seq_of_converges_to_seq_offset {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) : X ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro (N + k) (take n : ℕ, assume nge : n ≥ N + k, have n - k ≥ N, from nat.le_sub_of_add_le nge, have dist (X (n - k + k)) y < ε, from HN (n - k) this, show dist (X n) y < ε, using this, by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this) proposition converges_to_seq_of_converges_to_seq_offset_left {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) : X ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm), by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H proposition converges_to_seq_of_converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) : X ⟶ y in ℕ := @converges_to_seq_of_converges_to_seq_offset M _ X y 1 H proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset proposition converges_to_seq_offset_left_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) : ((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ section open list definition r_trans : transitive (@le ℝ _) := λ a b c, !le.trans definition r_refl : reflexive (@le ℝ _) := λ a, !le.refl theorem dec_prf_eq (P : Prop) (H1 H2 : decidable P) : H1 = H2 := begin induction H1, induction H2, reflexivity, apply absurd a a_1, induction H2, apply absurd a_1 a, reflexivity end -- there's a very ugly part of this proof. proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x in ℕ) : ∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K := begin cases H zero_lt_one with N HN, cases em (N = 0), existsi 1, intro n, apply le_of_lt, apply HN, rewrite a, apply zero_le, let l := map (λ n : ℕ, -dist (X n) x) (upto N), have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)), existsi max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, intro n, have Hsmn : ∀ m : ℕ, m < N → dist (X m) x ≤ max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, begin intro m Hm, apply le.trans, rotate 1, apply le_max_left, note Hall := min_lemma real.le_total r_trans r_refl Hnenil, have Hmem : -dist (X m) x ∈ (map (λ (n : ℕ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm), note Hallm' := of_mem_of_all Hmem Hall, apply le_neg_of_le_neg, esimp, esimp at Hallm', have Heqs : (λ (a b : real), classical.prop_decidable (@le.{1} real real.real_has_le a b)) = (@decidable_le.{1} real (@decidable_linear_ordered_comm_group.to_decidable_linear_order.{1} real (@decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group.{1} real (@discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring.{1} real real.discrete_linear_ordered_field)))), begin apply funext, intro, apply funext, intro, apply dec_prf_eq end, rewrite -Heqs, exact Hallm' end, cases em (n < N) with Elt Ege, apply Hsmn, exact Elt, apply le_of_lt, apply lt_of_lt_of_le, apply HN, apply le_of_not_gt Ege, apply le_max_right end end /- cauchy sequences -/ definition cauchy (X : ℕ → M) : Prop := ∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε proposition cauchy_of_converges_seq (X : ℕ → M) [H : converges_seq X] : cauchy X := take ε, suppose ε > 0, obtain y (Hy : converges_to_seq X y), from H, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos, let N := max N₁ N₂ in exists.intro N (take m n, suppose m ≥ N, suppose n ≥ N, have m ≥ N₁, from le.trans !le_max_left `m ≥ N`, have n ≥ N₂, from le.trans !le_max_right `n ≥ N`, have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`, have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`, show dist (X m) (X n) < ε, from calc dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle ... = dist (X m) y + dist (X n) y : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves) end metric_space_M /- convergence of a function at a point -/ section metric_space_M_N variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N] include strucM strucN definition converges_to_at (f : M → N) (y : N) (x : M) := ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε notation f `⟶` y `at` x := converges_to_at f y x definition converges_at [class] (f : M → N) (x : M) := ∃ y, converges_to_at f y x noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N := some H proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] : (f ⟶ limit_at f x at x) := some_spec H section omit strucN set_option pp.coercions true --set_option pp.all true open pnat rat section omit strucM private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) : of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) := rfl end theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n) c < 1 / (real.of_nat n + 1)) : ∀ ε : ℝ, ε > 0 → ∃ N : ℕ, ∀ n : ℕ, n ≥ N → dist (X n) c < ε := begin intros ε Hε, cases ex_rat_pos_lower_bound_of_pos Hε with q Hq, cases Hq with Hq1 Hq2, cases pnat_bound Hq1 with p Hp, existsi nat_of_pnat p, intros n Hn, apply lt_of_lt_of_le, apply H, apply le.trans, rotate 1, apply Hq2, have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp, apply le.trans, rotate 1, exact Hrat, change 1 / (of_nat n + 1) ≤ of_rat ((1 : ℚ) / (rat_of_pnat p)), rewrite [of_rat_divide, of_rat_one], eapply one_div_le_one_div_of_le, krewrite -of_rat_zero, apply of_rat_lt_of_rat_of_lt, apply rat_of_pnat_is_pos, krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add], apply real.of_nat_le_of_nat_of_le, apply le_add_of_le_right, assumption end end theorem all_conv_seqs_of_converges_to_at {f : M → N} {c : M} {l : N} (Hconv : f ⟶ l at c) : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ)) := begin intros X HX, rewrite [↑converges_to_at at Hconv, ↑converges_to_seq], intros ε Hε, cases Hconv Hε with δ Hδ, cases Hδ with Hδ1 Hδ2, cases HX 0 with _ HXlim, cases HXlim Hδ1 with N1 HN1, existsi N1, intro n Hn, apply Hδ2, split, apply and.left (HX _), exact HN1 Hn end theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N) (Hseq : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ))) : f ⟶ l at c := by_contradiction (assume Hnot : ¬ (f ⟶ l at c), obtain ε Hε, from exists_not_of_not_forall Hnot, let Hε' := iff.mp not_implies_iff_and_not Hε in obtain (H1 : ε > 0) H2, from Hε', have H3 [visible] : ∀ δ : ℝ, (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!! intros δ Hδ, note Hε'' := forall_not_of_not_exists H2, note H4 := forall_not_of_not_exists H2 δ, have ¬ (∀ x' : M, x' ≠ c ∧ dist x' c < δ → dist (f x') l < ε), from λ H', H4 (and.intro Hδ H'), note H5 := exists_not_of_not_forall this, cases H5 with x' Hx', existsi x', note H6 := iff.mp not_implies_iff_and_not Hx', rewrite and.assoc at H6, cases H6, split, assumption, cases a_1, split, assumption, apply le_of_not_gt, assumption end, let S : ℕ → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in have HS [visible] : ∀ n : ℕ, ∃ m : M, S n m, begin intro k, have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k, cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx', cases Hx' with Hne Hx', cases Hx' with Hdistl Hdistg, existsi x', esimp, split, apply dist_pos_of_ne, assumption, split, repeat assumption end, let X : ℕ → M := λ n, some (HS n) in have H4 [visible] : ∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ), from (take n, and.intro (begin note Hspec := some_spec (HS n), esimp, esimp at Hspec, cases Hspec, apply ne_of_dist_pos, assumption end) (begin apply cnv_real_of_cnv_nat, intro m, note Hspec := some_spec (HS m), esimp, esimp at Hspec, cases Hspec with Hspec1 Hspec2, cases Hspec2, assumption end)), have H5 [visible] : (λ n : ℕ, f (X n)) ⟶ l in ℕ, from Hseq X H4, begin note H6 := H5 H1, cases H6 with Q HQ, note HQ' := HQ !le.refl, esimp at HQ', apply absurd HQ', apply not_lt_of_ge, note H7 := some_spec (HS Q), esimp at H7, cases H7 with H71 H72, cases H72, assumption end) end metric_space_M_N section topology /- A metric space is a topological space. -/ open set prod topology variables {V : Type} [Vmet : metric_space V] include Vmet definition open_ball (x : V) (ε : ℝ) := {y ∈ univ | dist x y < ε} theorem open_ball_empty_of_nonpos (x : V) {ε : ℝ} (Hε : ε ≤ 0) : open_ball x ε = ∅ := begin apply eq_empty_of_forall_not_mem, intro y Hy, note Hlt := and.right Hy, apply not_lt_of_ge (dist_nonneg x y), apply lt_of_lt_of_le Hlt Hε end theorem radius_pos_of_nonempty {x : V} {ε : ℝ} {u : V} (Hu : u ∈ open_ball x ε) : ε > 0 := begin apply lt_of_not_ge, intro Hge, note Hop := open_ball_empty_of_nonpos x Hge, rewrite Hop at Hu, apply not_mem_empty _ Hu end theorem mem_open_ball (x : V) {ε : ℝ} (H : ε > 0) : x ∈ open_ball x ε := suffices x ∈ univ ∧ dist x x < ε, from this, and.intro !mem_univ (by rewrite dist_self; assumption) definition closed_ball (x : V) (ε : ℝ) := {y ∈ univ | dist x y ≤ ε} theorem closed_ball_eq_comp (x : V) (ε : ℝ) : closed_ball x ε = -{y ∈ univ | dist x y > ε} := begin apply ext, intro y, apply iff.intro, intro Hx, apply mem_comp, intro Hxmem, cases Hxmem with _ Hgt, cases Hx with _ Hle, apply not_le_of_gt Hgt Hle, intro Hx, note Hx' := not_mem_of_mem_comp Hx, split, apply mem_univ, apply le_of_not_gt, intro Hgt, apply Hx', split, apply mem_univ, assumption end omit Vmet definition open_sets_basis (V : Type) [metric_space V] := image (λ pair : V × ℝ, open_ball (pr1 pair) (pr2 pair)) univ definition metric_topology [instance] (V : Type) [metric_space V] : topology V := topology.generated_by (open_sets_basis V) include Vmet theorem open_ball_mem_open_sets_basis (x : V) (ε : ℝ) : (open_ball x ε) ∈ (open_sets_basis V) := mem_image !mem_univ rfl theorem open_ball_open (x : V) (ε : ℝ) : Open (open_ball x ε) := by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis theorem closed_ball_closed (x : V) {ε : ℝ} (H : ε > 0) : closed (closed_ball x ε) := begin apply iff.mpr !closed_iff_Open_comp, rewrite closed_ball_eq_comp, rewrite comp_comp, apply Open_of_forall_exists_Open_nbhd, intro y Hy, cases Hy with _ Hxy, existsi open_ball y (dist x y - ε), split, apply open_ball_open, split, apply mem_open_ball, apply sub_pos_of_lt Hxy, intros y' Hy', cases Hy' with _ Hxy'd, rewrite dist_comm at Hxy'd, split, apply mem_univ, apply lt_of_not_ge, intro Hxy', apply not_lt_self (dist x y), exact calc dist x y ≤ dist x y' + dist y' y : dist_triangle ... ≤ ε + dist y' y : add_le_add_right Hxy' ... < ε + (dist x y - ε) : add_lt_add_left Hxy'd ... = dist x y : by rewrite [add.comm, sub_add_cancel] end theorem not_open_of_ex_boundary_pt {U : set V} {x : V} (HxU : x ∈ U) (Hbd : ∀ ε : ℝ, ε > 0 → ∃ v : V, v ∉ U ∧ dist x v < ε) : ¬ Open U := begin intro HUopen, induction HUopen, {cases a with pr Hpr, cases pr with y r, cases Hpr with _ Hs, rewrite -Hs at HxU, have H : dist y x < r, from and.right HxU, cases Hbd _ (sub_pos_of_lt H) with v Hv, cases Hv with Hv Hvdist, apply Hv, rewrite -Hs, apply and.intro, apply mem_univ, apply lt_of_le_of_lt, apply dist_triangle, exact x, esimp, exact calc dist y x + dist x v < dist y x + (r - dist y x) : add_lt_add_left Hvdist ... = r : by rewrite [add.comm, sub_add_cancel]}, {cases Hbd 1 zero_lt_one with v Hv, cases Hv with Hv _, exact Hv !mem_univ}, {have Hxs : x ∈ s, from mem_of_mem_inter_left HxU, have Hxt : x ∈ t, from mem_of_mem_inter_right HxU, note Hsih := exists_not_of_not_forall (v_0 Hxs), note Htih := exists_not_of_not_forall (v_1 Hxt), cases Hsih with ε1 Hε1, cases Htih with ε2 Hε2, note Hε1' := iff.mp not_implies_iff_and_not Hε1, note Hε2' := iff.mp not_implies_iff_and_not Hε2, cases Hε1' with Hε1p Hε1', cases Hε2' with Hε2p Hε2', note Hε1'' := forall_not_of_not_exists Hε1', note Hε2'' := forall_not_of_not_exists Hε2', have Hmin : min ε1 ε2 > 0, from lt_min Hε1p Hε2p, cases Hbd _ Hmin with v Hv, cases Hv with Hvint Hvdist, note Hε1v := Hε1'' v, note Hε2v := Hε2'' v, cases em (v ∉ s) with Hnm Hmem, apply Hε1v, split, exact Hnm, apply lt_of_lt_of_le Hvdist, apply min_le_left, apply Hε2v, have Hmem' : v ∈ s, from not_not_elim Hmem, note Hnm := not_mem_of_mem_of_not_mem_inter_left Hmem' Hvint, split, exact Hnm, apply lt_of_lt_of_le Hvdist, apply min_le_right}, {have Hex : ∃₀ s ∈ S, x ∈ s, from HxU, cases Hex with s Hs, cases Hs with Hs Hxs, cases exists_not_of_not_forall (v_0 Hs Hxs) with ε Hε, cases iff.mp not_implies_iff_and_not Hε with Hεp Hv, cases Hbd _ Hεp with v Hv', cases Hv' with Hvnm Hdist, apply Hv, existsi v, split, apply not_mem_of_not_mem_sUnion Hvnm Hs, exact Hdist} end theorem ex_Open_ball_subset_of_Open_of_nonempty {U : set V} (HU : Open U) {x : V} (Hx : x ∈ U) : ∃ (r : ℝ), r > 0 ∧ open_ball x r ⊆ U := begin let balloon := {r ∈ univ | r > 0 ∧ open_ball x r ⊆ U}, cases em (balloon = ∅), have H : ∀ r : ℝ, r > 0 → ∃ v : V, v ∉ U ∧ dist x v < r, begin intro r Hr, note Hor := iff.mp not_and_iff_not_or_not (forall_not_of_sep_empty a (mem_univ r)), note Hor' := or.neg_resolve_left Hor Hr, apply exists_of_not_forall_not, intro Hall, apply Hor', intro y Hy, cases iff.mp not_and_iff_not_or_not (Hall y) with Hmem Hge, apply not_not_elim Hmem, apply absurd (and.right Hy) Hge end, apply absurd HU, apply not_open_of_ex_boundary_pt Hx H, cases exists_mem_of_ne_empty a with r Hr, cases Hr with _ Hr, cases Hr with Hrpos HxrU, existsi r, split, repeat assumption end end topology section continuity variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N] include Hm Hn open topology set /- continuity at a point -/ --definition continuous_at (f : M → N) (x : M) := --topology.continuous_at f x -- the ε - δ definition of continuity is equivalent to the topological definition theorem continuous_at_intro {f : M → N} {x : M} (H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) : continuous_at f x := begin rewrite ↑continuous_at, intros U HfU Uopen, cases ex_Open_ball_subset_of_Open_of_nonempty Uopen HfU with r Hr, cases Hr with Hr HUr, cases H Hr with δ Hδ, cases Hδ with Hδ Hx'δ, existsi open_ball x δ, split, apply mem_open_ball, exact Hδ, split, apply open_ball_open, intro y Hy, apply HUr, cases Hy with y' Hy', cases Hy' with Hy' Hfy', cases Hy' with _ Hy', rewrite dist_comm at Hy', note Hy'' := Hx'δ Hy', apply and.intro !mem_univ, rewrite [-Hfy', dist_comm], exact Hy'' end theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε := begin intros ε Hε, rewrite [↑continuous_at at Hfx], cases Hfx (open_ball (f x) ε) (mem_open_ball _ Hε) !open_ball_open with V HV, cases HV with HVx HV, cases HV with HV HVf, cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ, cases Hδ with Hδ Hδx, existsi δ, split, exact Hδ, intro x' Hx', rewrite dist_comm, apply and.right, apply HVf, existsi x', split, apply Hδx, apply and.intro !mem_univ, rewrite dist_comm, apply Hx', apply rfl end theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) : continuous_at f x := continuous_at_intro (take ε, suppose ε > 0, obtain δ Hδ, from Hf this, exists.intro δ (and.intro (and.left Hδ) (take x', suppose dist x' x < δ, if Heq : x' = x then by rewrite [-Heq, dist_self]; assumption else (suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this), this)))) theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) : f ⟶ f x at x := take ε, suppose ε > 0, obtain δ Hδ, from continuous_at_elim Hf this, exists.intro δ (and.intro (and.left Hδ) (take x', assume H : x' ≠ x ∧ dist x' x < δ, show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H))) definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N} (Hf : continuous f) : converges_seq (λ n, f (X n)) := begin cases HX with xlim Hxlim, existsi f xlim, rewrite ↑converges_to_seq at *, intros ε Hε, let Hcont := (continuous_at_elim (Hf xlim)) Hε, cases Hcont with δ Hδ, cases Hxlim (and.left Hδ) with B HB, existsi B, intro n Hn, apply and.right Hδ, apply HB Hn end omit Hn theorem id_continuous : continuous (λ x : M, x) := begin intros x, apply continuous_at_intro, intro ε Hε, existsi ε, split, assumption, intros, assumption end end continuity end analysis /- complete metric spaces -/ structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type := (complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X) namespace analysis proposition complete (M : Type) [cmM : complete_metric_space M] {X : ℕ → M} (H : cauchy X) : converges_seq X := complete_metric_space.complete X H end analysis /- the reals form a metric space -/ noncomputable definition metric_space_real [instance] : metric_space ℝ := ⦃ metric_space, dist := λ x y, abs (x - y), dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end, eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero, dist_comm := abs_sub, dist_triangle := abs_sub_le ⦄