open nat -- deeper congruence universe l constants (T : Type.{l}) (x1 x2 x3 x4 x5 x6 : T) (f : T → T → T) constants (f_comm : ∀ x y, f x y = f y x) (f_l : ∀ x y z, f (f x y) z = f x (f y z)) (f_r : ∀ x y z, f x (f y z) = f y (f x z)) attribute f_comm [simp] attribute f_l [simp] attribute f_r [simp] #simplify eq 0 (f (f x2 x4) (f x5 (f x3 (f x1 x6)))) open is_trunc constants g : Π (x y : nat), x ≠ y → Type₁ constants a b c : nat constants H₁ : a ≠ b constants H₂ : a = c attribute H₂ [simp] definition ne_is_hprop [instance] (a b : nat) : is_hprop (a ≠ b) := sorry #simplify eq 0 (g a b H₁)