import standard using eq_proofs inductive nat : Type := | zero : nat | succ : nat → nat definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y infixl `+`:65 := add definition mul (n m : nat) := nat_rec zero (fun m x, x + n) m infixl `*`:75 := mul axiom mul_zero_right (n : nat) : n * zero = zero variable P : nat → Prop print "===========================" theorem tst (n : nat) (H : P (n * zero)) : P zero := subst (mul_zero_right _) H