/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Haitao Zhang Partitions of a type A into finite subsets of A. Such a partition is represented by a function f : A → finset A which maps every element a : A to its equivalence class. -/ import .card open function eq.ops variable {A : Type} variable [deceqA : decidable_eq A] include deceqA namespace finset definition is_partition (f : A → finset A) := ∀ a b, a ∈ f b = (f a = f b) structure partition : Type := (set : finset A) (part : A → finset A) (is_part : is_partition part) (complete : set = Union set part) attribute partition.part [coercion] namespace partition definition equiv_classes (f : partition) : finset (finset A) := image (partition.part f) (partition.set f) lemma equiv_class_disjoint (f : partition) (a1 a2 : finset A) (Pa1 : a1 ∈ equiv_classes f) (Pa2 : a2 ∈ equiv_classes f) : a1 ≠ a2 → a1 ∩ a2 = ∅ := assume Pne, assert Pe1 : _, from exists_of_mem_image Pa1, obtain g1 Pg1, from Pe1, assert Pe2 : _, from exists_of_mem_image Pa2, obtain g2 Pg2, from Pe2, begin apply inter_eq_empty_of_disjoint, apply disjoint.intro, rewrite [eq.symm (and.right Pg1), eq.symm (and.right Pg2)], intro x, rewrite [*partition.is_part f], intro Pxg1, rewrite [Pxg1, and.right Pg1, and.right Pg2], intro Pe, exact absurd Pe Pne end theorem class_equation (f : @partition A _) : card (partition.set f) = nat.finset.Sum (equiv_classes f) card := let s := (partition.set f), p := (partition.part f), img := image p s in calc card s = card (Union s p) : partition.complete f ... = card (Union img id) : image_eq_Union_index_image s p ... = card (Union (equiv_classes f) id) : rfl ... = nat.finset.Sum (equiv_classes f) card : card_Union_of_disjoint _ id (equiv_class_disjoint f) lemma equiv_class_refl {f : A → finset A} (Pequiv : is_partition f) : ∀ a, a ∈ f a := take a, by rewrite [Pequiv a a] -- make it a little easier to prove union from restriction lemma restriction_imp_union {s : finset A} (f : A → finset A) (Pequiv : is_partition f) (Psub : ∀{a}, a ∈ s → f a ⊆ s) : s = Union s f := ext (take a, iff.intro (assume Pains, begin rewrite [(Union_insert_of_mem f Pains)⁻¹, Union_insert], apply mem_union_l, exact equiv_class_refl Pequiv a end) (assume Painu, have Pclass : ∃ x, x ∈ s ∧ a ∈ f x, from iff.elim_left (mem_Union_iff s f _) Painu, obtain x Px, from Pclass, have Pfx : f x ⊆ s, from Psub (and.left Px), mem_of_subset_of_mem Pfx (and.right Px))) lemma binary_union (P : A → Prop) [decP : decidable_pred P] {S : finset A} : S = {a ∈ S | P a} ∪ {a ∈ S | ¬(P a)} := ext take a, iff.intro (suppose a ∈ S, decidable.by_cases (suppose P a, mem_union_l (mem_filter_of_mem `a ∈ S` this)) (suppose ¬ P a, mem_union_r (mem_filter_of_mem `a ∈ S` this))) (suppose a ∈ filter P S ∪ {a ∈ S | ¬ P a}, or.elim (mem_or_mem_of_mem_union this) (suppose a ∈ filter P S, mem_of_mem_filter this) (suppose a ∈ {a ∈ S | ¬ P a}, mem_of_mem_filter this)) lemma binary_inter_empty {P : A → Prop} [decP : decidable_pred P] {S : finset A} : {a ∈ S | P a} ∩ {a ∈ S | ¬(P a)} = ∅ := inter_eq_empty (take a, assume Pa nPa, absurd (of_mem_filter Pa) (of_mem_filter nPa)) definition disjoint_sets (S : finset (finset A)) : Prop := ∀ s₁ s₂ (P₁ : s₁ ∈ S) (P₂ : s₂ ∈ S), s₁ ≠ s₂ → s₁ ∩ s₂ = ∅ lemma disjoint_sets_filter_of_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} : disjoint_sets S → disjoint_sets {s ∈ S | P s} := assume Pds, take s₁ s₂, assume P₁ P₂, Pds s₁ s₂ (mem_of_mem_filter P₁) (mem_of_mem_filter P₂) lemma binary_inter_empty_Union_disjoint_sets {P : finset A → Prop} [decP : decidable_pred P] {S : finset (finset A)} : disjoint_sets S → Union {s ∈ S | P s} id ∩ Union {s ∈ S | ¬P s} id = ∅ := assume Pds, inter_eq_empty (take a, assume Pa nPa, obtain s Psin Pains, from iff.elim_left !mem_Union_iff Pa, obtain t Ptin Paint, from iff.elim_left !mem_Union_iff nPa, assert s ≠ t, from assume Peq, absurd (Peq ▸ of_mem_filter Psin) (of_mem_filter Ptin), Pds s t (mem_of_mem_filter Psin) (mem_of_mem_filter Ptin) `s ≠ t` ▸ mem_inter Pains Paint) section variables {B: Type} [deceqB : decidable_eq B] include deceqB lemma binary_Union (f : A → finset B) {P : A → Prop} [decP : decidable_pred P] {s : finset A} : Union s f = Union {a ∈ s | P a} f ∪ Union {a ∈ s | ¬P a} f := begin rewrite [binary_union P at {1}], apply Union_union, exact binary_inter_empty end end open nat nat.finset section open algebra algebra.finset variables {B : Type} [acmB : add_comm_monoid B] include acmB lemma Sum_binary_union (f : A → B) (P : A → Prop) [decP : decidable_pred P] {S : finset A} : Sum S f = Sum {s ∈ S | P s} f + Sum {s ∈ S | ¬P s} f := calc Sum S f = Sum ({s ∈ S | P s} ∪ {s ∈ S | ¬(P s)}) f : binary_union ... = Sum {s ∈ S | P s} f + Sum {s ∈ S | ¬P s} f : Sum_union f binary_inter_empty end lemma card_binary_Union_disjoint_sets (P : finset A → Prop) [decP : decidable_pred P] {S : finset (finset A)} : disjoint_sets S → card (Union S id) = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card := assume Pds, calc card (Union S id) = card (Union {s ∈ S | P s} id ∪ Union {s ∈ S | ¬P s} id) : binary_Union ... = card (Union {s ∈ S | P s} id) + card (Union {s ∈ S | ¬P s} id) : card_union_of_disjoint (binary_inter_empty_Union_disjoint_sets Pds) ... = Sum {s ∈ S | P s} card + Sum {s ∈ S | ¬P s} card : by rewrite [*(card_Union_of_disjoint _ id (disjoint_sets_filter_of_disjoint_sets Pds))] end partition end finset