import algebra.e_closure open eq namespace relation section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R variables ⦃a a' : A⦄ {s : R a a'} {r : T a a} parameter {R} theorem ap_ap_e_closure_elim_h₁ {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : square (ap (ap h) (ap_e_closure_elim_h e p t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) := begin induction t, apply sorry, apply sorry, { rewrite [▸*, ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 v_0 }, apply sorry end end end relation