import macros definition Set (A : Type) : Type := A → Bool definition element {A : Type} (x : A) (s : Set A) := s x infix 60 ∈ : element definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2 infix 50 ⊆ : subset theorem SubsetTrans (A : Type) : ∀ s1 s2 s3 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s3 ⇒ s1 ⊆ s3 := take s1 s2 s3, Assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3), have s1 ⊆ s3 : take x, Assume Hin : x ∈ s1, have x ∈ s3 : let L1 : x ∈ s2 := MP (Instantiate H1 x) Hin in MP (Instantiate H2 x) L1 theorem SubsetExt (A : Type) : ∀ s1 s2 : Set A, (∀ x, x ∈ s1 = x ∈ s2) ⇒ s1 = s2 := take s1 s2, Assume (H : ∀ x, x ∈ s1 = x ∈ s2), Abst (fun x, Instantiate H x) theorem SubsetAntiSymm (A : Type) : ∀ s1 s2 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s1 ⇒ s1 = s2 := take s1 s2, Assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s1), have s1 = s2 : MP (have (∀ x, x ∈ s1 = x ∈ s2) ⇒ s1 = s2 : Instantiate (SubsetExt A) s1 s2) (have (∀ x, x ∈ s1 = x ∈ s2) : take x, have x ∈ s1 = x ∈ s2 : let L1 : x ∈ s1 ⇒ x ∈ s2 := Instantiate H1 x, L2 : x ∈ s2 ⇒ x ∈ s1 := Instantiate H2 x in ImpAntisym L1 L2) -- Compact (but less readable) version of the previous theorem theorem SubsetAntiSymm2 (A : Type) : ∀ s1 s2 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s1 ⇒ s1 = s2 := take s1 s2, Assume H1 H2, MP (Instantiate (SubsetExt A) s1 s2) (take x, ImpAntisym (Instantiate H1 x) (Instantiate H2 x))