import cast variables A A' B B' : Type variable x : A eval cast (Refl A) x eval x = (cast (Refl A) x) variable b : B definition f (x : A) : B := b axiom H : (A -> B) = (A' -> B) variable a' : A' eval (cast H f) a' axiom H2 : (A -> B) = (A' -> B') definition g (x : B') : Nat := 0 eval g ((cast H2 f) a') check g ((cast H2 f) a') eval (cast H2 f) a' variables A1 A2 A3 : Type axiom Ha : A1 = A2 axiom Hb : A2 = A3 variable a : A1 eval (cast Hb (cast Ha a)) check (cast Hb (cast Ha a))