-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import macros import subtype import optional using subtype using optional -- We are encoding the (sum A B) as a subtype of (optional A) # (optional B), where -- (proj1 n = none) ≠ (proj2 n = none) definition sum_pred (A B : (Type U)) := λ p : (optional A) # (optional B), (proj1 p = none) ≠ (proj2 p = none) definition sum (A B : (Type U)) := subtype ((optional A) # (optional B)) (sum_pred A B) namespace sum theorem inl_pred {A : (Type U)} (a : A) (B : (Type U)) : sum_pred A B (pair (some a) none) := not_intro (assume N : (some a = none) = (none = (@none B)), have eq : some a = none, from (symm N) ◂ (refl (@none B)), show false, from absurd eq (distinct a)) theorem inr_pred (A : (Type U)) {B : (Type U)} (b : B) : sum_pred A B (pair none (some b)) := not_intro (assume N : (none = (@none A)) = (some b = none), have eq : some b = none, from N ◂ (refl (@none A)), show false, from absurd eq (distinct b)) theorem inhabl {A : (Type U)} (H : inhabited A) (B : (Type U)) : inhabited (sum A B) := inhabited_elim H (take w : A, subtype_inhabited (exists_intro (pair (some w) none) (inl_pred w B))) theorem inhabr (A : (Type U)) {B : (Type U)} (H : inhabited B) : inhabited (sum A B) := inhabited_elim H (take w : B, subtype_inhabited (exists_intro (pair none (some w)) (inr_pred A w))) definition inl {A : (Type U)} (a : A) (B : (Type U)) : sum A B := abst (pair (some a) none) (inhabl (inhabited_intro a) B) definition inr (A : (Type U)) {B : (Type U)} (b : B) : sum A B := abst (pair none (some b)) (inhabr A (inhabited_intro b)) theorem inl_inj {A B : (Type U)} {a1 a2 : A} : inl a1 B = inl a2 B → a1 = a2 := assume Heq : inl a1 B = inl a2 B, have eq1 : inl a1 B = abst (pair (some a1) none) (inhabl (inhabited_intro a1) B), from refl (inl a1 B), have eq2 : inl a2 B = abst (pair (some a2) none) (inhabl (inhabited_intro a1) B), from subst (refl (inl a2 B)) (proof_irrel (inhabl (inhabited_intro a2) B) (inhabl (inhabited_intro a1) B)), have rep_eq : (pair (some a1) none) = (pair (some a2) none), from abst_inj (inhabl (inhabited_intro a1) B) (inl_pred a1 B) (inl_pred a2 B) (trans (trans (symm eq1) Heq) eq2), show a1 = a2, from optional::injectivity (calc some a1 = proj1 (pair (some a1) (@none B)) : refl (some a1) ... = proj1 (pair (some a2) (@none B)) : proj1_congr rep_eq ... = some a2 : refl (some a2)) theorem inr_inj {A B : (Type U)} {b1 b2 : B} : inr A b1 = inr A b2 → b1 = b2 := assume Heq : inr A b1 = inr A b2, have eq1 : inr A b1 = abst (pair none (some b1)) (inhabr A (inhabited_intro b1)), from refl (inr A b1), have eq2 : inr A b2 = abst (pair none (some b2)) (inhabr A (inhabited_intro b1)), from subst (refl (inr A b2)) (proof_irrel (inhabr A (inhabited_intro b2)) (inhabr A (inhabited_intro b1))), have rep_eq : (pair none (some b1)) = (pair none (some b2)), from abst_inj (inhabr A (inhabited_intro b1)) (inr_pred A b1) (inr_pred A b2) (trans (trans (symm eq1) Heq) eq2), show b1 = b2, from optional::injectivity (calc some b1 = proj2 (pair (@none A) (some b1)) : refl (some b1) ... = proj2 (pair (@none A) (some b2)) : @proj2_congr _ _ (pair (@none A) (some b1)) (pair (@none A) (some b2)) rep_eq ... = some b2 : refl (some b2)) theorem distinct {A B : (Type U)} (a : A) (b : B) : inl a B ≠ inr A b := assume N : inl a B = inr A b, have eq1 : inl a B = abst (pair (some a) none) (inhabl (inhabited_intro a) B), from refl (inl a B), have eq2 : inr A b = abst (pair none (some b)) (inhabl (inhabited_intro a) B), from subst (refl (inr A b)) (proof_irrel (inhabr A (inhabited_intro b)) (inhabl (inhabited_intro a) B)), have rep_eq : (pair (some a) none) = (pair none (some b)), from abst_inj (inhabl (inhabited_intro a) B) (inl_pred a B) (inr_pred A b) (trans (trans (symm eq1) N) eq2), show false, from absurd (proj1_congr rep_eq) (optional::distinct a) set_opaque optional false set_opaque subtype false set_opaque optional::some false set_opaque optional::none false set_opaque subtype::rep false set_opaque subtype::abst false set_opaque optional_pred false theorem dichotomy {A B : (Type U)} (n : sum A B) : (∃ a, n = inl a B) ∨ (∃ b, n = inr A b) := let pred : (proj1 (rep n) = none) ≠ (proj2 (rep n) = none) := P_rep n in _