-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import classical hilbert decidable using decidable -- Excluded middle + Hilbert implies every proposition is decidable -- First, we show that (decidable a) is inhabited for any 'a' using the excluded middle theorem inhabited_decidable [instance] (a : Bool) : inhabited (decidable a) := or_elim (em a) (assume Ha, inhabited_intro (inl Ha)) (assume Hna, inhabited_intro (inr Hna)) -- Note that inhabited_decidable is marked as an instance, and it is silently used -- for synthesizing the implicit argument in the following 'epsilon' theorem bool_decidable [instance] (a : Bool) : decidable a := epsilon (λ d, true)